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Abstract 

Quiliche Altamirano, Renato José; Leiras, Adriana (advisor); Baião 
Amorim, Fernanda Araújo (co-advisor). Rio de Janeiro, 2023. 92p. A 
supervised learning approach to predict household aid demand 
for recurrent clime-related disasters in Peru. Dissertação de 
Mestrado – Departamento de Engenharia Industrial Católica do Rio de 
Janeiro. 
 

This dissertation presents a data-driven approach to the problem of 

predicting recurrent disasters in developing countries. Supervised 

machine learning methods are used to train classifiers that aim to predict 

whether a household would be affected by recurrent climate threats (one 

classifier is trained for each natural hazard). The approach developed is 

valid for recurrent natural hazards affecting a country and allows disaster 

risk managers to target their operations with more knowledge. In addition, 

predictive assessment allows managers to understand the drivers of 

these predictions, leading to proactive policy formulation and operations 

planning to mitigate risks and prepare communities for recurring 

disasters.  

The proposed methodology was applied to the case study of Peru, 

where classifiers were trained for cold waves, floods, and landslides. In 

the case of cold waves, the classifier was 73.82% accurate. The research 

found that low-income families in rural areas are vulnerable to cold wave-

related disasters and need proactive humanitarian intervention. 

Vulnerable families have poor urban infrastructure, including footpaths, 

roads, lampposts, and water and drainage networks. The role of health 

insurance, health status, and education is minor. Households with sick 

members are more likely to be affected by cold waves. Higher educational 

attainment of the head of the household is associated with a lower 

probability of being affected by cold snaps. 

In the case of flooding, the classifier is 82.57% accurate. Certain 

urban conditions, such as access to drinking water, lampposts, and 



 

 

drainage networks, can make rural households more susceptible to 

flooding. Owning a computer or laptop decreases the likelihood of being 

affected by flooding while owning a bicycle and being headed by married 

individuals increases it. Flooding is more common in less developed 

urban settlements than isolated rural families. 

In the case of landslides, the classifier is 88.85% accurate and 

follows a different logic than that of floods. The importance of the 

prediction is more evenly distributed among the features considered when 

learning the classifier. Thus, the impact of an individual feature on the 

prediction is small. Long-term wealth is more critical: the probability of 

being affected by a landslide is lower for families with specific appliances 

and household building materials. Rural communities are more affected 

by landslides, especially those located at higher altitudes and greater 

distances from cities and markets. The average marginal impact of 

altitude is non-linear. 

The classifiers provide an intelligent data-driven method that saves 

resources by ensuring accuracy. In addition, the research provides 

guidelines for addressing efficiency in aid distribution, such as facility 

location formulations and vehicle routing. 

The research results have several managerial implications, so the 

authors call for action from disaster risk managers and other relevant 

stakeholders. Recurrent disasters challenge all of humanity. 

 

Keywords 

Supervised Machine Learning; disaster risk classifier; cold waves; 

floods; landslides; households’ features; logistic regression; random forest; 

XGBoost. 

 



 

 

 

 

Resumo 

Quiliche Altamirano, Renato José; Leiras, Adriana (orientadora); 
Baião Amorim, Fernanda Araújo (co-orientador). Rio de Janeiro, 2023. 
92p. Uma abordagem de aprendizado supervisionado para prever 
a demanda de ajuda familiar para desastres climáticos 
recorrentes no Peru. Dissertação de Mestrado - Departamento de 
Engenharia Industrial da Pontifícia Universidade Católica do Rio de 
Janeiro. 
 

Esta dissertação apresenta uma abordagem baseada em dados para 

o problema de predição de desastres recorrentes em países em 

desenvolvimento. Métodos de aprendizado de máquina supervisionado são 

usados para treinar classificadores que visam prever se uma família seria 

afetada por ameaças climáticas recorrentes (um classificador é treinado 

para cada perigo natural). A abordagem desenvolvida é válida para perigos 

naturais recorrentes que afetam um país e permite que os gerentes de risco 

de desastres direcionem suas operações com mais conhecimento. Além 

disso, a avaliação preditiva permite que os gerentes entendam os 

impulsionadores dessas previsões, levando à formulação proativa de 

políticas e planejamento de operações para mitigar riscos e preparar 

comunidades para desastres recorrentes.  

A metodologia proposta foi aplicada ao estudo de caso do Peru, onde 

foram treinados classificadores para ondas de frio, inundações e 

deslizamentos de terra. No caso das ondas de frio, o classificador tem 

73,82% de precisão. A pesquisa descobriu que famílias pobres em áreas 

rurais são vulneráveis a desastres relacionados a ondas de frio e precisam 

de intervenção humanitária proativa. Famílias vulneráveis têm 

infraestrutura urbana precária, incluindo trilhas, caminhos, postes de 

iluminação e redes de água e drenagem. O papel do seguro saúde, estado 

de saúde e educação é menor. Domicílios com membros doentes levam a 

maiores probabilidades de serem afetados por ondas de frio. Maior 

realização educacional do chefe da família está associada a uma menor 

probabilidade de ser afetado por ondas de frio. 



 

 

No caso das inundações, o classificador tem 82.57% de precisão. 

Certas condições urbanas podem tornar as famílias rurais mais suscetíveis 

a inundações, como acesso à água potável, postes de iluminação e redes 

de drenagem. Possuir um computador ou laptop diminui a probabilidade de 

ser afetado por inundações, enquanto possuir uma bicicleta e ser chefiado 

por indivíduos casados aumenta. Inundações são mais comuns em 

assentamentos urbanos menos desenvolvidos do que em famílias rurais 

isoladas. 

No caso dos deslizamentos de terra, o classificador tem 88.85% de 

precisão, e é segue uma lógica diferente do das inundações. A importância 

na previsão é mais uniformemente distribuída entre as características 

consideradas no aprendizado do classificador. Assim, o impacto de um 

recurso individual na previsão é pequeno. A riqueza a longo prazo parece 

ser mais crítica: a probabilidade de ser afetado por um deslizamento é 

menor para famílias com certos aparelhos e materiais domésticos de 

construção. Comunidades rurais são mais afetadas por deslizamentos, 

especialmente aquelas localizadas em altitudes mais elevadas e maiores 

distâncias das cidades e mercados. O impacto marginal médio da altitude 

é não linear. 

Os classificadores fornecem um método inteligente baseado em 

dados que economiza recursos garantindo precisão. Além disso, a 

pesquisa fornece diretrizes para abordar a eficiência na distribuição da 

ajuda, como formulações de localização da instalação e roteamento de 

veículos. 

Os resultados da pesquisa têm várias implicações gerenciais, então 

os autores convocam à ação gestores de risco de desastres e outros 

interessados relevantes. Desastres recorrentes desafiam toda a 

humanidade.  

 

 

Palavras-chave 

Aprendizado de máquina supervisionado; classificador de risco de 

desastre; ondas de frio; inundações; deslizamentos de terra.  
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Introduction 

During the XXI century, disasters have increasingly impacted humanity by 

producing poverty, disrupting the economy, causing social conflicts, and harming 

the environment (Besiou et al., 2021). However, the most critical consequences 

are human losses and, ultimately, human suffering. The intractable magnitude of 

such losses highlights the need to manage risk and disasters better. 

Developing countries are the most susceptible to losses (Guha-Sapir et al., 

2015). Their susceptibility increases because of their resource scarcity and 

reduced capacity to mitigate the impacts of disasters. Having lower indicators of 

human development, quality of housing, and available income conditions, 

households from developing countries have higher expected losses from a 

disaster. 

The case of developing countries is more critical than the rest of the world 

because they face a dynamic problem (Akram et al., 2021). Such countries face 

higher losses from disasters that reduce their available resources and capabilities 

because they must waste them on disaster response and recovery activities (after 

a disaster strikes, there is no such option to save resources in the response and 

recovery activities). With lower resources and affected capacities, such countries 

must face future disasters for which they need more preparation. Hence, this 

reinforcement loop or a vicious cycle may last indefinitely if impactful interventions 

are absent (Sodhi, 2016).  

Disasters are not natural (Besiou et al., 2021). They occur when natural 

hazards interact with vulnerable populations. Several regions of developing 

countries that are vulnerable are also affected by recurrent natural hazards that 

later turn into recurrent disasters. This dissertation attempts to contribute to solving 

the problem of recurrent disasters using a data-based approach. 

Managing disaster risk is critical to the problem of countries recurrently 

affected by disasters (Bosher et al., 2021). Efficient and effective use of resources 

in pre-disaster managerial interventions leads to reduced disaster impact. 
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Reduced disaster impacts save resources in response and recovery activities. The 

saved resources may be later used to improve disaster risk management. Then, 

the vicious cycle turns into a virtuous one. 

This research proposes using Machine Learning methods to train supervised 

classifiers to predict if a household would be affected by natural hazards. This 

approach is valid for recurrent natural hazards affecting a country. Then, demand 

can be screened, and disaster risk managers can accurately target their 

operations. Furthermore, predictive assessment allows managers to understand 

the drivers of such predictions, leading to proactively formulating policies and 

planning operations to mitigate risks and prepare communities for recurrent 

disasters. 

The proposed risk screening tool has implications for managers such as 

those mentioned before, but it also provides granular demand estimations that may 

drive countrywide multi-hazard risk reduction. In harmony with the theory of 

disaster risk (Twigg, 2003), data on households’ multiple dimensions of 

vulnerability was collected. Economic, social, health, and geographical 

vulnerability indicators might determine if a household was affected by a disaster 

(given that it was exposed to a natural hazard). 

The proposed methodology was applied to the case study of Peru. Peru is a 

developing country that is recurrently affected by disasters, particularly those 

potentialized by El Niño (extreme precipitations causing floods and landslides) and 

cold waves in both Coastal and Andean regions. Then, classifiers for cold waves, 

floods, and landslides are trained. We followed an experimental methodology 

evaluating the algorithms Logistic Regression, Random Forest Classifier, and 

XGBoost in several random scenarios and selected the classifier with the highest 

balanced accuracy. 

The main contribution of this dissertation is that it uses multiple dimensions 

of vulnerability based on households’ characteristics to build supervised learning 

classifiers. Other approaches use data from social media or outsourcing platforms 

that may not represent poor regions with no access to the internet (Lin et al., 2020). 

Furthermore, this dissertation provides a framework for automated model updating 

and re-training with new data under the same domain using hyperparameter 

optimization techniques (Hutter et al., 2019). 

The thesis structure is described in Table 1. 
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Table 1 – Thesis structure 

Main research 

question 

To what extent does multidimensional vulnerability can predict 

the risk of being affected by recurrent disasters (Cold waves, 

Floods, or Landslides)? 

Main 

objective 

To train classifiers to predict whether a household would be 

affected by recurrent natural hazards (Cold waves, Floods, 

and Landslides) 

Secondary 

research 

questions 

What are the households’ 

characteristics that make 

them susceptible to Cold 

waves-related disasters? 

What are the households’ 

characteristics that make them 

susceptible to Floods and 

Landslides? 

Secondary 

objectives 

To train a classifier for Cold 

waves-related disasters at 

the household level of 

analysis. To interpret and 

understand the logic of 

predictions in terms of 

features. To provide 

guidelines for the practical 

usage of such a classifier. 

To train classifiers for whether a 

household would be affected by 

Floods and Landslides. To 

interpret and understand the 

logic of predictions in terms of 

features. To provide guidelines 

and methods to use the 

predictions to take action and 

plan the humanitarian supply 

chain. 

Methodology Applied supervised Machine 

Learning 

Applied supervised Machine 

Learning 

Deliverable Cold wave risk classifiers Floods risk classifier, 

Landslides risk classifiers 

# PAPER 1 PAPER 2 

A critical difference in both papers is that the second paper provides the 

decision-makers with guidelines when facing multi-hazards. Also, the second 

paper provides a nationwide management perspective. Division in two papers is 

also justified by division on the sample sizes (Paper 1 contains samples from 
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households in Puno, while Paper 2 uses households from all Peruvian regions). 

Additional tools and guidelines are shown to deepen the potential of 

implementation of the results of this research.  

An Elsevier copyright Appendix was included to guide authors in the legal 

reproduction of the contents of the first paper that was submitted to the 

International Journal of Disaster Risk Reduction. 

The rest of the dissertation is structured as follows. The case of Cold Waves 

is presented in Section 2, which shows the first paper under the second round of 

review at the International Journal of Disaster Risk Reduction. Then, Section 3 

presents the case of Floods and Landslides in a second paper, to be submitted 

after the Master's thesis defense committee considerations. 
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2  
A predictive assessment of households' risk against 
disasters caused by cold waves using supervised learning 

2.1. Introduction 

The frequency of clime-related disasters has grown exponentially in the last 

twenty years (EM-DAT, 2022). This fact may be explained mainly by the increase 

in global warming and population sizes, which, in turn, pressure on natural 

resources, generating harmful outcomes for the environment (Keja-Kaereho & 

Tjizu, 2019). Disasters are not natural, as the same hazard leads to different 

outcomes in different locations worldwide (Besiou et al., 2021). Disaster risk is the 

outcome of interactions of hazard, vulnerability, and exposure (UNDRR, 2015; 

Wright et al., 2020). In consequence, the impact of disasters depends on the 

degree of vulnerability, which is defined by anthropogenic conditions, the hazard's 

scale and magnitude, and the exposure level. 

Hazards might harm humans, animals, and the environment, destroying a 

specific geographic position in a period (Preciado, 2015). Although hazards are 

mostly known to be an occurrence that human beings cannot control, human 

interaction with the environment has caused an increase in the frequency of 

climate-related hazards (Shafapourtehrany et al., 2022). The clime has become 

more extreme. Cold waves are not the exception; people with low incomes or the 

vulnerable are the most affected. However, the literature on cold waves is scarce 

despite their harmful consequences on the livelihoods of poor agricultural 

households (Amirkhani et al., 2022; López-Bueno et al., 2021). 

We argue that proactive disaster risk reduction is essential for communities 

affected by recurrent disasters. Disaster risk management phases are not 

independent (Besiou et al., 2021). Thus, proactive disaster risk reduction activities 

are carried out before a disaster strikes to help mitigate risks and create savings 

that communities may use for further development and building of resilience that 

is urgent due to the increasing magnitude and frequency of disasters.  

The increase in the frequency of cold wave-related disasters during the last 

century disproportionately affected low-income countries (Amirkhani et al., 2022; 
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López-Bueno et al., 2021). India, Bangladesh, Poland, and Russia are the most 

affected countries, harming 1,227 million people and generating 184 thousand 

deaths since 2000.  

Cold waves can trigger disasters that result in the loss of human lives, 

particularly in cases of high vulnerability. Households with poor infrastructure and 

limited resources to combat the cold are at a higher risk (López-Bueno et al., 2021). 

Individuals with a high prevalence of comorbidities, such as cardiovascular 

diseases, are also at an increased risk (Shaposhnikov and Revich, 2016). As such, 

deaths caused by cold waves are not natural occurrences but rather the extreme 

result of cold climate conditions affecting impoverished households with chronic 

illnesses. 

This paper examines the situation in Puno, Peru, one of the poorest regions 

in the country. A significant proportion of Puno’s population lives in rural areas, 

where they are exposed to cold waves and rely on subsistence agriculture to 

survive. These cold waves pose a significant challenge to the livelihoods of poor 

rural households, as they must use their limited resources to cope with the harsh 

conditions. As a result, these households may struggle to develop resilience and 

improve their situation. The primary concern in Puno is the impact of cold waves 

on the ability of poor rural households to sustain their livelihoods. 

This paper proposes a method to identify and target households prone to be 

affected by cold waves. These households need interventions in risk mitigation, 

disaster prevention, and preparedness. To achieve intelligent and accurate 

targeting, this paper focuses on a data-centric approach (ENAHO, 2022). 

Specifically, we aim to predict which households must be prepared for a cold wave-

related disaster. 

This prediction must be accurate for the at-risk households, representing 

demand points that must be met. This is because when a predictive model 

misclassifies positive outcomes, defined as at-risk households, deprivation costs 

represent demand points that need essential supplies. However, the model needs 

to be more accurate in their risks, and aid goods are not being supplied (Gutjahr 

and Fischer, 2018; Holguin-Veras et al., 2013). These cases are named false 

negatives.  

Our proposed model gives greater importance to accurate prediction of 

disaster risk, even if it implies that some households that do not have risk are being 
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misclassified. Considering these objectives, our methodology uses supervised 

learning algorithms - Logistic Regression and Random Forest Classifier - with data 

from the Peruvian National Household Survey for Puno, 2019 to learn a binary 

classifier that discriminates which households are at risk of being affected by a cold 

wave-related disaster. Machine Learning would help to build a risk screening tool 

that can be tuned, in terms of models' hyperparameters, to maximize predictive 

power considering the importance of false negatives.  

Puno, in Peru, is affected by recurrent cold waves. Peruvian's South Andean 

Region is especially susceptible to these types of hazards. Since 2000, considering 

world-total historical data on disasters caused by Extreme Low-Temperature 

Events (ELTEs) registered in EM-DAT (2022), 21.28% have affected this 

geographic boundary. According to EM-DAT estimations, the most harmful ELTE 

was recorded in 2004 as a cold wave of -35°C that affected 40.30% of the total 

population of 15 Peruvian regions. Puno is a rural and low-densely populated 

region in southeast Peru. Puno is the epicenter of ELTEs affecting PSAR, as 

70.00% of events registered in EM-DAT affected Puno from 2003 to 2015. As 

ELTEs affect a sizeable geographic boundary, estimating the number of affected 

people and economic losses, for example, could be challenging.  

Research on proactive disaster risk reduction would significantly impact 

Puno because of the high prevalence of agricultural households. These disasters 

may cause economic losses that impact their long-term wealth. If a community is 

unprepared to face cold wave-related disasters, it might enter a vicious cycle of 

cold waves affecting the economy, shaping disaster impacts. This vicious cycle 

affects the ability to respond and recover from disasters, producing a lower budget 

to invest in resilience mechanisms (Besiou et al., 2021).  

The proactive intervention on Puno may significantly impact the disaster 

response and recovery. Following Holguin-Veras et al. (2013), resources invested 

in response and recovery include logistic and deprivation costs. An optimized 

predictive model would identify which households would be the target of proactive 

interventions. Puno is a case study characterized by spatially dispersed final 

demand points and high peaks of deprivations caused by accumulated 

vulnerabilities (Kim and Sohn, 2018; Quiliche et al., 2021); thus, accurate forecasts 

are significant. Assessment of delivery strategies, transportation costs, and their 

balance with deprivation costs are left for future complementary research as the 
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social objective function, which includes logistic costs, is the primary concern of 

humanitarian logistics. 

This paper's contribution is twofold. First, we propose a supervised learning 

pipeline to produce an accurate classifier based on households’ vulnerability 

conditions. This proposal is grounded in previous research. The pipeline includes 

hyperparameter optimization to automate the search for hyperparameters, 

including the adaptation of the pipeline to domain requirements, which, in this case, 

is equivalent to considering the importance of deprivation costs. Second, we report 

statistical interpretations of the classifier using the logic of average marginal effects 

to provide decision-makers with more practical insights. 

The learned predictive model is expected to contribute to reducing social 

costs while considering the importance of deprivation costs (Holguin-Veras et al., 

2013). As the focus is on disaster preparedness, the predictive model will identify 

the final demand points that need the prepositioning of supplies, thus producing 

information regarding the number of supplies required or the demand for 

humanitarian aid to perform proactive interventions. In the context of disastrous 

events, the value of information on where and at which level to preposition supplies 

is high. Those supplies aim to reduce the expected damages to households' 

livelihoods strongly linked to agriculture and livestock (Quiliche and Mancilla, 

2021).  

The remainder of this paper is divided into five Sections. Section 2 describes 

the main works on SLAs, Machine Learning applications to disaster risk 

management, and emergency assessment. Section 3 details the case study of 

Puno, Perú. Section 4 depicts data collection methods, Machine Learning pipeline, 

and experimental setting. Section 5 brings the main results, descriptive analysis, 

model performance, and further analysis of results. Section 6 discusses the results 

and their practical implications, such as statistical interpretation and threshold 

tunning. Finally, Section 7 brings our conclusions and recommendations for 

improvements in disaster preparedness strategies and future research avenues.  

2.2. Theoretical foundation 

2.2.1. Disaster risk reduction for clime-related disasters 

The most outstanding theory on disaster risk claims that risk is produced if 

three elements are combined inside a geographic boundary (Ramos et al., 2010; 

UNDRR, 2015; Twigg, 2004): i., natural hazard, i.e., the natural phenomenon that 
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may harm communities; ii. exposure, i.e., the condition of an agent within the 

geographic boundary of being exposed to such natural hazard; and iii. vulnerability, 

which shapes the consequences of a damaging event on agents. If an agent is 

resilient to disasters, it would have small losses after a disastrous event. 

Vulnerability is a set of conditions that an agent possesses, making it more prone 

to high losses when affected by a hazardous event (Christian et al., 2021; Sahana 

et al., 2019; Tasnuva et al., 2020; Ullah et al., 2022). Among natural hazards that 

jeopardize vulnerable communities, clime-related hazards such as rainfalls, heat 

waves, cold waves, or storms have an impact that covariates with the degree of 

vulnerability of the agents within the geographic boundary exposed to such 

hazards (Renteria et al., 2021). Furthermore, these hazards tend to be seasonal 

and localized in a geographic boundary, and the magnitude of losses can be 

anticipated by considering vulnerability (Simmons and Sutter, 2014). 

The challenge of disaster risk reduction comes from vulnerability shaping the 

magnitude of the losses related to agents' exposure to natural hazards. Disaster 

risk can be mitigated by reducing vulnerability, or equivalent, by creating resilience, 

as stated in the Sendai Framework for Disaster Risk Reduction (Aitsi-Selmi et al., 

2015). However, the reduction of vulnerability is a long-term goal. From an 

economic perspective, communities need resources to face disasters. Then, 

disaster risk reduction could be incredibly challenging when a community is 

affected by recurrent disasters. In those cases, the resources allocated to disaster 

response and recovery are more likely to be higher than those invested in risk 

mitigation and disaster preparedness. Thus, the total cost of the disaster risk 

management cycle is steadily high, as illustrated by the red line in Figure 1. 

 

Figure 1: Theoretical representation of Disaster Management Helix optimization. 
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The helix concept for disaster risk management illustrates the 

dynamics of disaster risk reduction in the case of recurrent disasters. The 

long-term is of particular importance. In cases where communities are 

affected by recurrent disasters, unmitigated disaster losses might harm the 

overall economic environment by causing infrastructure destruction, 

systemic agricultural losses, and hazards to public health (Ferreira, 2012; 

López-Bueno et al., 2021; Quiliche and Mancilla, 2021).  

In sum, there are two aspects of disaster risk theory that we want to 

highlight. The first is that vulnerability is, by definition, the best predictor of 

disaster risk. Hence, it is crucial to collect data on vulnerability conditions. 

For instance, Linardos (2022) reported some studies deploying neural 

networks to collect data on households’ equipment and construction 

materials to predict disasters. The second is that the significant implication 

of this research is that disaster risk reduction can be done efficiently by 

having accurate information to plan and implement the pre-disaster risk 

reduction and preparedness activities such as stock pre-positioning and 

improved housing infrastructure, among others. If well done, these activities 

may positively affect the long-term dynamics of the Disaster Management 

Helix in Figure 1, leading to a more significant cold wave-related risk 

reduction in Puno. 

 

2.2.2. Machine Learning in Disaster Risk Reduction 

Previous studies addressed disaster preparedness with predictive analytics 

(Davis et al., 2010; Simmons and Sutter, 2014; Van Thang et al., 2022). There are 

several contributions of Machine Learning to disaster risk management. Lu et al. 

(2021) performed a comprehensive review of applied Machine Learning in the 

context of public health emergencies related to disasters. The authors found that 

the main contribution of Machine Learning is to process information to support 

decision-making in managing risks by producing forecasts and insights to improve 

understanding of phenomena. For example, automated models can improve 

decision-making under time-sensitive conditions by processing big data. In this 

sense, Machine Learning contributes to multiple edges of information 

management: demand forecasts may help to reduce material convergence 
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(Holguin-Veras et al., 2014), stochastic programming in transportation may help to 

avoid bottlenecks (Alcántara-Ayala, 2019), and so on. Machine Learning to predict 

and understand complex phenomena helps to mine valuable insights from data 

(Fayyad and Shapiro, 1996; Tomasini and Van Wassenhove, 2009; Behl and 

Dutta, 2018). Izquierdo-Horna et al. (2022) applied a hybrid approach to seismic 

risk assessment in Perú, integrating Random Forest and Hierarchical Analysis to 

determine seismic risk in Pisco. China is a country known for having densely 

populated cities. An early-awareness approach based on Machine Learning is 

beneficial in that context, such as the approach proposed by (Bai et al., 2022), by 

which a disaster response plan can be executed within a more extended time 

window before flooding is at its peak. 

A critical gap identified in Machine Learning applications for disaster risk 

reduction is that predictive modeling simplifies vulnerability by economic factors. A 

multi-dimensional approach must be included to better represent vulnerability (for 

example, Ahmad and Routray, 2018; Patri et al., 2022). This multi-dimensional 

vulnerability approach contributes to a better understanding of clime-related 

disaster risks and improves prediction accuracies (Ramos et al., 2010; Zhao et al., 

2022). The applied Machine Learning contributes to accurate estimates of demand 

for better disaster risk management.  

The vulnerability dimensions are composed of endogenous variables—these 

features might covariate with other predictors not considered in this paper. For 

example, vulnerable agents tend to be settled in places with high exposure. The 

classifier is expected to exploit these relationships to produce accurate predictions. 

According to theory, the essential variables for creating our Machine Learning 

algorithm are next defined (López-Bueno et al., 2021; Renteria et al., 2021).   

Low income and lousy infrastructure are the main drivers of vulnerability to 

climate-related disasters, according to Tasnuva et al. (2020). Bad outcomes in 

health, such as a high prevalence of chronic illness, could also be related to a 

higher vulnerability (Djalante et al., 2020). Specific configurations of socio-

economic variables make households especially vulnerable, such as 

unemployment and low educational achievement. There is evidence that younger 

and female head of households is related to the probability of being affected by a 

disaster (Rapeli, 2017). Geographical vulnerability depends on household location, 

which at the same time is determined by economic vulnerability: households 
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located in vulnerable areas tend to be poor, and this magnifies the vulnerability 

condition (Mattea, 2019). 

2.3. The case of Puno, Perú 

This paper analyzes the case of cold wave-related disasters. Cold wave-

related disaster risk is sensible to vulnerability. Figure 2 illustrates the triggering 

process of cold wave-related disasters, from natural hazards to disasters impacting 

populations (Quiliche and Mancilla, 2021). Losses occur when exposure meets 

vulnerability (i.e., if an agent had been resilient to cold waves, it would not have 

been affected by the disaster). Hence, disaster risk reduction is a priority for 

communities affected by cold waves. 

  

Figure 2: Causes of cold-related disastrous events affecting communities. 

The analysis for the Puno case considers the household level. This level of 

granularity allows the researchers to draw insights into the points of final demand 

for aid (Eckhardt et al., 2019; Eckhardt et al., 2022; Jardim et al., 2022). Such 

information is valuable for developing disaster risk reduction strategies.  

Vulnerability characterization by socioeconomic features is critical to the 

proposal of this paper. López-Bueno et al. (2021) performed a statistical analysis 

of mortality rates in urban and rural areas of Madrid, Spain. The authors conclude 

that the main risk drivers of mortality rates are socio-economic. Amirkhani et al. 

(2022) found an interesting pattern for a cross-section of countries worldwide for 

1999-2018 using EM-DAT (2022): cold waves and severe winter conditions caused 

more deaths in middle-income countries than in high-income ones. 

The demand is screened using a supervised learning classifier. Hence, a 

household at risk is a demand point. Then, minimizing False Negatives and False 

Positives, some misclassification sources is crucial. In Figure 3, the localization of 
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most final demand points (known a priori from past data) is in rural areas outside 

the principal cities (Gutjahr and Fischer, 2018). The main cities can be identified 

on the map by conglomerates of households closer than 5km to each other; in the 

north, several isolated households are located in rural areas and have positive risk 

classification. False Negatives are households at risk of being affected by a cold 

wave-related disaster labeled “without risks.” False Negatives would produce 

deprivation costs because those households need aid, but the model decides they 

do not (Tomasini and Van Wassenhove, 2009; Eckhardt et al., 2017). A model 

training was adapted to minimize false negatives to produce accurate 

classifications with reduced deprivation costs to tackle this obstacle. 

The time series of minimum temperatures reported in Figure 4 illustrates the 

seasonality of the cold waves in Puno (SENAHMI, 2022). Every year, households 

located within Puno are exposed to cold waves. In July, August, and September, 

the exposure tends to be higher on average for all the meteorological stations that 

collect temperature data in Puno. 

This recurrent exposure causes frequent disasters affecting most of Puno’s 

population (Alarcón and Trebejo, 2010). Disaster risk management is different 

when dealing with recurrent disasters (in contrast to the case of Earthquakes that 

happen once in a decade in Peru). This paper proposes to estimate the demand 

for aid in the aftermath of Cold Waves. 

In sum, this paper covers the problem of disaster risk reduction for 

communities with recurrent disasters. Then, it proposes to train a classifier using 

Machine Learning methods to identify points of final demand and support pre-

disaster risk reduction and preparedness activities. Hence, a more significant 

impact on model implementation is expected in the pre-disaster phase. 

Nevertheless, the insights may be helpful for post-disaster response and recovery 

activities, as they also contribute to understanding vulnerability drivers at the 

household level. 
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Figure 3: Spatial distribution of households exposed to ELTEs 



 

 

 

 

 

Figure 4: Time series plot for average minimum temperature in Puno 2009-2012 



 

 

 

 

2.4. Materials and methods 

2.4.1. Data collection methods and the classification problem 

Raw household vulnerability characteristics data were collected from the 

National Household Survey by Peruvian National Institute of Statistics and 

Informatics in 2018-2021. Data is available at the national level. The survey's 

sampling method was stratified over political regions. Thus, the survey is 

representative of Puno at the regional level. The following survey modules were 

considered for this analysis: population and housing (modules 100 and 200), 

education (module 300), health (module 400), employment (module 500), and 

democracy and transparency (module 612). These modules contain information 

about the defined dimensions of vulnerability (UNDRR, 2015; Salazar-Briones et 

al., 2020; Renteria et al., 2021).  

The following question is asked to the informers: 

In the last 12 months, has your house been affected by natural disasters 

(drought, storm, plague, flood, etc.)? 

The target variable equals one if the respondent said natural disasters had 

affected their house. In the binary classification jargon, this category is also labeled 

as positive. 

1)Yi = {
1 if the household is at risk of being affected by a cold-related disaster
0 otherwise                                                                                                                

 

Even though this variable does not provide specific information about the 

type of disaster, we consider it appropriate to represent risk associated with cold 

waves because: 

1. For the specific case of Puno, there is an overwhelming prevalence 

of risks related to low temperatures (see Section 2.3 for data analytics 

support for this proposition). To some extent, every household has a 

latent degree of cold wave-related disaster risk. 

2. The average household's monthly earnings are US$139.53, and the 

poverty line is estimated at US$104.45 (conversion rate of 1US$ = 

S/. 3.37). The literature emphasized the importance of economic 

deprivations driving cold-related disaster risk (López Bueno et al., 

2021). 
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3. Suppose a household is at risk of being affected by a drought, storm, 

plague, flood, or landslide. In that case, it would likely be at risk of 

being affected by another climate-related disaster, such as cold 

waves-related disasters (Rentería et al., 2021). The mechanism 

explaining this correlation is the vulnerability conditions these 

households share. 

Considering this evidence, it seems reasonable to operationalize the target 

variable as in Equation 1: equal to one when the household is at risk of being 

affected by cold waves-related disasters and zero otherwise. 

2.4.2. Machine Learning Pipeline 

Supervised learning was applied for binary classification, considering that the 

target variable is categorical but binary encoded (see Equation 1). The 

methodological approach for model training was based on a standard framework 

for Machine Learning model training (Giovanelli et al., 2021; Waring et al., 2020). 

It included three main steps: pre-processing, data processing, and post-

processing. Model testing included an experimental validation method for each 

supervised learning algorithm. The objective was to find the best performing, most 

explainable, and parsimonious model (Hastie et al., 2001). This model must 

perform well on unseen data or testing data. 

The procedure illustrated in Figure 5 was followed to reach a model with the 

abovementioned characteristics. 

Figure 5 shows an experimental setting different from the classical random 

train-test split approach. The objective of this experimental setting is to discuss 

what would have been the outcome of model implementation in 2021 and, hence, 

shedding light on the practical implications of the implementation of Machine 

Learning techniques into disaster risk reduction. Additionally, this procedure 

implies hyperparameters' Optimization, which improves model performance based 

on an objective function. 
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Figure 5: Detailed procedure for Machine Learning model training 

Training data (2018-2020) pass through several steps, which include fitting 

the model to random subsets or batches of the pre-processed data and then doing 

this multiple times to get a cross-validation score. The Hyperparameter 

optimization loop is repeated until a certain of iterations are reached. Then, the 

trained model is used to estimate metrics in test data and evaluate performance. 

Sections 2.4.2.1 to 2.4.2.3 explain the three phases applied in the optimization 

loop. 

2.4.2.1. Data pre-processing 

The feature space extracted from the survey is multi-dimensional. This data 

feature overcomes the empirical over-simplification of existing disaster vulnerability 

studies, which are restricted to the socio-economic dimension, thus ignoring the 

dependence on other factors (Villarroel-Lamb, 2020; Regal, 2021; Szczyrba et al., 

2021 are some examples). However, the proposed feature space entails greater 

empirical complexity as more features are considered for the model training 

process. Some features may not be robust predictors of the outcome, and 

supervised learning algorithms must consider a feature selection process (Xu et 

al., 2019). 

The dataset comprises 86 features, of which 84 are binary and two are 

numeric. The greater the number of features, the more computational time is 

required for hyperparameter search for each supervised learning algorithm. The 
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literature identifies the three most-used approaches to handle multi-dimensional 

datasets with supervised learning algorithms: dimensionality reduction, sequential 

feature selection, and model-based feature selection (Venkatesh & Anuradha, 

2019; Pedregosa et al., 2011).  

Model-based feature selection was adopted in our procedure, known in the 

literature as sparse learning (Xu et al., 2019). On the one hand, standard 

dimensionality reduction techniques, such as Principal Component Analysis, 

resulted in a significant loss of information that negatively impacted the predictive 

power of supervised algorithms in preliminary experiments performed with this 

data. On the other hand, sequential feature selection increased the computational 

time by increasing the time required to evaluate each hyperparameter 

configuration and was discarded in our procedure.  

Using several dummies may lead to collinearity and a singular matrix. 

However, this pattern only caused delays in Logistic Regression model training 

and, in any case, caused non-convergence of the vector of parameters. Thus, it 

was addressed in Logistic Regression by using a stochastic gradient descent 

solver that speeded up computations. Collinearity was not a problem for the 

Random Forest Classifier. 

Following packages' documentation guidelines, supervised learning 

algorithms' performances improve when input features are measured on the same 

scale (Pedregosa et al., 2011). As shown in Figure 5, the first step in cross-

validation iteration is to scale the data. The scaling method is called Robust 

Scaling, a variation of Standard Scaling that uses median and interquartile ranges 

for Scaling, thus producing more robust features' standardization (Zheng and 

Casari, 2018). Missing data was removed before the Robust Scaling. 

2.4.2.2. Data processing 

Elastic-Net Logistic Regression (ENLR) and Random Forest Classifier (RFC) 

were selected because of their functionalities regarding features' importance 

(Micheletti et al., 2014). These algorithms rank the feature's importance and reach 

the optimal predictive formula as a function of a subset of features, removing large 

amounts of redundancy and noise in the dataset (Xu et al., 2019). 

This paper considered the trade-off between expected performance and 

interpretability as additional criteria for selecting the best classifier. According to 
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the experimental results of Fauvel et al. (2022) on UCI datasets, ENLR 

outperformed Support Vector Machines (SVM), Local Cascade, and Multilayer 

Perceptron (MP). It performed almost as well as Bagging and Boosting and Simple 

Ensemble Methods that use ensembles of Decision Trees, Gaussian Naïve Bayes, 

and Stochastic Gradient Descent. On the other hand, RFC outperformed other 

algorithms, including XGBoost, SVM, Gradient Boosting, Multilayer Perceptron 

(MP), and ENLR. In the experiments, RFC was the second-best supervised 

learning algorithm.  

ENLR and RFC were selected because other algorithms may perform 

equally but be more complex to explain their logic to relevant stakeholders. RFC 

algorithm has some advantages over ENLR. RFC may consider cross-influencing 

factors in prediction, but ENLR assumes that features are independent of each 

other and, thus, fails in accounting for cross-influencing factors such as other linear 

models. ENLR is easier to interpret but sensible to outliers. However, significant 

outliers were not found in the data, and ENLR could run in tractable time (the 

stochastic gradient descent method to fit ENLR may facilitate the convergence of 

ENLR objective function). 

▪ Elastic-Net Logistic Regression 

Zou and Hastie (2005) proposed for the first time the Elastic-Net 

regularization technique as a combination of the Least Absolute Shrinkage 

Selection Operator (LASSO), known as the L1 regularization, and Ridge 

regression, known as L2 regularization, terms. The adaptation to Logistic 

Regression was proposed in the literature using different solvers and formulations, 

but the one used here is based on Pedregosa et al. (2011). The objective function 

is stated as follows: 

min
β,β0

1−ρ

2
βTβ + ρ‖β‖ + C∑ log (exp (−Yi(xi

Tβ + c)) + 1)N
i   (2) 

Where 𝑥𝑖
𝑇 is a data vector corresponding to observation 𝑖, Yi is the respective 

observation point for target classes. Considering that both optimal Elastic-Net 

mixing parameter ρ and C inverse of regularization strength are selected based on 

cross-validation scores, the vector of parameters β is estimated to fit the optimal 

model to training data, as shown in Figure 5. Equation 2 shows the loss function 

for ENLR and is minimized through Stochastic Gradient Descent (Bottou, 2010 and 

Pedregosa et al., 2011) with a learning rate equal to 𝜂. 
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We next define the hyperparameter search for ENLR in Equation 3: 

𝐸𝑁𝐿𝑅(. ) =

{
 

 
Penalty='Elastic-Net'

𝜂='Optimal'                  

C~𝐿𝑂𝐺𝑈(1𝐸−2, 1𝐸2) 

ρ~𝑈(0,1)                       

        (3) 

The procedure in Figure 5 searches for best "C"  and ρ considering a priori 

uniform distributions for both parameters, being "C"  defined in logarithmic space. 

▪ Random Forest classifier 

The algorithm is an ensemble of Decision Trees fitted with the CART 

algorithm (Jackins et al., 2021) on multiple sub-samples of a dataset. Trees are 

pruned and then averaged to balance the bias-variance trade-off and maximize the 

predictive power of the ensemble (Pedregosa et al., 2012). the following steps were 

followed to train RFCs (Xin and Ren, 2022): 

Algorithm 1. Random Forest Classifier 

Random Forest Classifier 

1. Randomly select a subset of features Kmax. 

2. Randomly sample N observations with replacement. 

3. Calculate the first node using the best-split point under criterion CRIT with the 

obtained subset of data, following the rules defined above (this applies for further 

nodes): 

3.1. The minimum number of data points placed in a node before the node is 
split equals Minsplit. 

3.2. The minimum number of data points allowed in a leaf node equals Minleaf. 
3.3. Perform cost-complexity pruning of lower information-gain nodes 

according to CPPα. 
4. Categorize the node into daughter nodes using the best split with selected 

criterion CRIT. 

5. Categorize more daughter nodes until the tree reaches the defined Maxdepth. 

6. Repeat steps 1 to 5 Nestimators times to build the same number of trees, which 

refers to the size of the ensemble. 

7. Build the prediction algorithm by averaging the probabilistic prediction over 

the ensemble 

Authors' adaptation from Jackins et al. (2021). 

We next define the hyperparameter search for RFC in Equation 4: 
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𝑅𝐹𝐶(. ) =

{
 
 
 

 
 
 

Kmax = 1                                            

CRIT = 𝑈𝐶𝐴𝑇[′𝐺𝑖𝑛𝑖′, ′𝐸𝑛𝑡𝑟𝑜𝑝𝑦′]

Minsplit~𝑈(0.5,1)                            

Minleaf~𝑈(0.5,1)                             

CPPα~𝑈(0,0.1)                                 
Maxdepth~𝑈𝐼𝑁𝑇(1,20)                  

Nestimators~𝑈𝐼𝑁𝑇(0,100)              

    (4) 

Cross-validation helps to identify the optimal values of CRIT, Minsplit, Minleaf, 

CPPα, Maxdepth, and Nestimators. After the cross-validation loop, the optimal 

ensemble is fitted to training data, as illustrated in Figure 5.  

2.4.2.3. Data post-processing 

This section describes what happens at the end of every cross-validation 

loop. Model performance metrics are calculated for each hyperparameter 

configuration in each iteration, sampled randomly from hyperparameter search 

spaces defined in Equations 3 and 4. Within the cross-validation loop, a training 

set is randomly shuffled and split into 𝐹 folds of equal size; the algorithm is trained 

with a sample composed of 𝐹 − 1 folds and tested on the remaining. This 

procedure produces 𝐹 performance metrics that are averaged to have a point 

estimate of the performance of the corresponding hyperparameter setting. This 

procedure is known as K-Fold cross-validation Pedregosa et al., 2012. For 

robustness purposes, the K-Fold cross-validation method is repeated 𝑅 times in 

each iteration, known as Repeated K-Fold cross-validation (Pedregosa et al., 

2012). 

▪ Bayesian Optimization 

In a Grid Search or Random Search scheme, every iteration is independent 

of the other, and the optimization program would sample 𝑁𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠. The more 

hyperparameters to tune, the bigger the required number of iterations. The 

combinatorics of possible hyperparameter configurations in the RFC algorithm are 

particularly large. Due to combinatorial search spaces, optimizing 

hyperparameters is an NP-Hard problem (Yang and Shami, 2020). 

Hyperparameter optimization techniques are essential because they improve 

the performance of ML models. Bayesian Optimization is used as a sequential 

hyperparameter optimization scheme to overcome the computational complexity 

inherent in hyperparameter optimization procedures. In the Bayesian method, each 
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cross-validation iteration depends on the previous one. Further theoretical and 

computational details can be reviewed in Owen (2022). 

▪ Objective function 

The objective function of Bayesian Optimization is typically defined as the 

model's accuracy or another performance metric. This paper's objective function is 

a linear convex combination of Matthews Correlation Coefficient (MCC) and 

Sensitivity (True Positive Rate). 

On the one hand, MCC represents an accurate model regarding both classes 

(Chico & Jurman, 2021). On the other hand, sensitivity captures the ability of the 

model to predict positive classes. For ground truth positive classes, this is known 

as the True Positive Rate (Luque et al., 2019). In Section 3, the importance of 

deprivation costs was introduced. The definition of this objective function is based 

on the importance of False Negatives. The True Positive Rate decreases with the 

increase of False Negatives. Hence, the objective function is shown in Equation 5:  

𝑍𝑚 = 𝜆.𝑀𝐶𝐶𝑚 + (1 − 𝜆). 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑚, ∀𝑚, 𝜆∈[0,1]    (5) 

The greater the λ coefficient, the lower the importance of Sensitivity or False 

Negatives. The value of λ was set to 0.5 in this experiment. The core assumption 

for this optimization is that there is a trade-off between accuracy of both classes 

and accuracy of positive class (or Sensitivity). If the model misclassifies positive 

classes, it labels risk households as non-eligible for humanitarian focalization. 

Thus, maximizing the Zm leads to an accurate and deprivation costs-aware model. 

After Bayesian Optimization, the following metrics were calculated to detail 

model performance for the test dataset: 

▪ Model performance metrics 

Area Under the ROC Curve (AUC) 

This metric represents the distance between the 'no discrimination' classifier 

(the worst classifier that distributes the predictions over classes uniformly for any 

probability threshold) and the tested classifier. It is defined in the function of 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 =

𝐹𝑃

𝑇𝑃+𝐹𝑃
 coordinates at various 

probability threshold settings. The range of this metric varies in the closed interval 

[0,1], so better classifiers are found when 𝐴𝑈𝐶 → 1. 

Accuracy 
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The accuracy estimation represents the application of a common heuristic 

where the diagonal of the confusion matrix is maximized. The formula is given by 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
. The range of this metric varies in the closed interval 

[0,1], so better classifiers are found when 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 → 1. 

F1-Score 

F1- Score is defined as the harmonic mean of the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 and 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
. The formula is given by 𝐹1 =

𝑇𝑃

𝑇𝑃+0.5(𝐹𝑃+𝐹𝑁)
. The range of this 

metric varies in the closed interval [0,1], so better classifiers are found when 𝐹1 →

1. 

Matthews Correlation Coefficient 

This metric is a correlation coefficient in the [-1,1] interval. The formula is 

given by 𝑀𝐶𝐶 =
𝑇𝑃(𝑇𝑁)−𝐹𝑃(𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑃)
. It was selected to choose the best 

classifier as it tends to co-optimize all elements of the confusion matrix for binary 

classifications (Luque et al., 2019; Chicco and Jurman, 2020). By maximizing this 

metric, the classifier minimizes both deprivation and logistic costs. 

All the Machine Learning pipeline steps were performed on Python 3.11 

programming language using packages Scikit-Learn 1.2.0, Scikit-optimize 0.8.1, 

Pandas 1.5.2, and NumPy 1.24.1. Data analytics was built using Matplotlib 3.6.2 

and Seaborn 0.12.1. 

2.5. Description of results 

This section presents and describes the main results. First, we characterize 

the study case using descriptive analytics of features that might predict cold wave-

related disaster risk. Second, we present the main results of Machine Learning 

model training, including model selection. Third, we show descriptive analytics of 

False Negatives and False Positives to enrich the description of results (Dantas et 

al., 2021). 

2.5.1. Descriptive characterization of Puno 

According to historical data, the urban public infrastructure in Puno is poor. 

Whether households are settled in rural areas, 15.94% have inlaid walls, 52.43% 

have tracks, 21.93% are paved, and 40.94% are settled near a lighting pole. 

Regarding ownership, 82.55% of households are owned, but 22.17% have a title 

of ownership. Housing infrastructure is fragile: 27.49% of households have walls 
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of concrete. Most households in Puno are settled in rural areas (59.04%) at an 

average altitude of 3880 meters above sea level. 

Regarding access to essential services, 34.28% of households are 

connected to a water and drainage network, and 55.39% have daily access to 

water for consumption. Nevertheless, access to electricity has improved, with 

89.33% of households with electric lighting compared to 74.18% in 2017. 

Households without electricity use candles (7.14%) or other lighting (3.53%). The 

main cooking methods are GLP (60.58%) and manure (39.86%). Manure cooking 

is a characteristic of rural livelihoods (Sagastume-Gutiérrez et al., 2022). Thus, the 

prevalence of manure cooking is explained by the prevalence of rurality. Regarding 

access to Information and Communications Technologies, 14.05% of households 

have internet access, but 83.05% have a cellphone. 

Households are equipped with assets like color TVs (47.36%), bicycles 

(32.05%), motorcycles (24.35%), and DVDs (24.38%). Just 6.54% of households 

have a particular car, which is explained by the observed poor urban infrastructure. 

In modern society, ICTs grant opportunities and capabilities for individuals 

(Oyelami et al., 2022); however, just 18.14% of households have a computer or 

laptop. Just 8.68% of households have a refrigerator. The annual per capita 

expenditure approximates short-term household nominal income. The average 

annual per capita expenditure is US$1634.29. The average expenditure is below 

Latin America's principal cities, such as Lima, Bogotá, Buenos Aires, and Rio de 

Janeiro. It is worth mentioning that the mean income is above the median, meaning 

that more than half of the per capita expenditure distribution is below the average, 

showing some degree of income inequality. 

It is common to find old adults (51 to 65 years old) and old (more than 65 

years old) household heads (59.95%). Even though Puno is not densely populated, 

38.47% of households are overcrowded, which means they have more inhabitants 

than bedrooms. 40.68% of households' heads are married. Puno has a poor 

development of human capital: 19.56% of households' heads are illiterate, 63.02% 

have no education, and just 2.25% have a postgraduate degree. 

Lastly, the population faces a high prevalence of acute illness (96.24%) and 

chronic illness (87.52%). More than half of the households in the sample have at 

least one member who searched for medical attention (67.14%), and 73.32% have 
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a subsidized health insurance regime. 32.79% of households have at least one 

member with one or more disabilities. 

Table 2: Multi-dimensional vulnerability features 

Category Variable 

Household exterior 

and access to public 

goods 

Households with inlaid walls, households with painted 

walls, Outside tracks are paved, Outside tracks are 

terrain, Outside paths, Lighting poles, No public good. 

Ownership and 

physical 

characteristics 

Independent house, the household is a house, the 

household is totally owned, the household has a title of 

ownership, Concrete walls, Concrete floor, Concrete roof, 

Overcrowded bedrooms, No other rooms than bedrooms. 

Access and use of 

essential services 

Water network, Potable water, Quality water (chlorine), 

Daily access to water, Drainage network, Electric lighting, 

Candle lighting, Other lighting, GLP cooking, Wood 

cooking, Other cooking, Manure cooking, Phone, cell 

phone, Cable TV, Internet 

Household income 

and assets 

Per capita expenditure, Radio, Color TV, Black-White TV, 

Sound equipment, DVD, Computer or laptop, Electric 

iron, Electric blender, Gas stove, Refrigerator, Cloth 

washing machine, Microwave oven, Sewing machine, 

Bicycle, Car, Motorcycle, Tricycle 

Socio-

demographics 

The head is employed, The head is a woman, The head 

is married, The head is literate, The head has no 

education, The head achieved basic education, The head 

achieved technic education, The head achieved a college 

education, The head achieved pos-graduate education, 

The head is a young adult (17-35), The head is an adult 

(36-50), The head is an old adult (51-65), The head is old 

(more than 66) 

Health and 

insurance 

(for household 

members) 

Illness (last month), Accident (last month), Healthy (last 

month), Chronic illness, Medical intervention (last month), 

Contributory health insurance, Subsidized health 

insurance, Disabilities 

Geographical 

context 

The household is located in a rural area, Altitude. 
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Authors' own elaboration from ENAHO (2023). 

Figure 6 shows the correlation heatmap of features listed in Table 2. 

Statistical correlation between features was estimated using Spearman's Rank-

Order Correlation. There are some yellow points in housing variables, such as 

construction materials. Then, if walls are made of concrete, it is likely that the roof 

and floor are also made of concrete. Furthermore, economic vulnerability indicators 

are related to each other; this suggests that measurement is consistent between 

individual indicators. 

However, the high correlation between features is not an obstacle. It is worth 

mentioning that both ENLR and RFC have mechanisms to handle correlated 

predictors, so all the variables were kept. Then, the interpretation of the results was 

made based on post-estimation feature importance. 

Following results from the Spearman correlation matrix, households with 

concrete walls and floors tend to connect to a water and drainage network in urban 

areas. Rural households have fewer assets, lower educational levels, health 

access, and lower acute illness prevalence. We next report model training results. 
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Figure 6: Features' correlation heatmap 

 

2.5.2. Model training results 

As optimal hyperparameters were selected based on performance on the 

training dataset, it is crucial to analyze how trained models perform on unseen 

data. We use data from 2021 as a test dataset to perform this analysis. Table 3 

summarizes the main results regarding model performance. 

Table 3: Models' performance on the test dataset (Puno, 2021). 

Classifier ROC-AUC Accuracy F1-Score MCC Sensitivity 

ENLR 73.76 73.5 73.31 47.48 77.75 

RFC 74.24 73.82 74.3 48.64 80.9 

Authors own elaboration 

RFC was selected as the best predictive model for the case of cold wave-

related disaster risk in Puno. The RFC produced more accurate results than ENLR 

and achieved higher sensitivity, making it less prone to misclassify households at 
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risk of being affected by cold wave-related disasters. We next report the optimal 

hyperparameter configuration in Equation 6: 

𝑅𝐹𝐶∗ =

{
 
 
 

 
 
 

Kmax = 1                                                  

CRIT = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦                                   
Minsplit = 7                                             

Minleaf = 9                                              
CPPα = 2.47𝐸 − 4                                 
Maxdepth = 9                                          

Nestimators = 40                                      

   (6) 

For reproducible purposes, the trained model was saved to a file to be loaded 

in software to reproduce the results or to use the model for further practical 

implementations. We report below the corresponding confusion matrix in Figure 7 

for the Test Dataset; we also report the confusion matrix in Figure 8 for the Train 

Dataset: 

 

Figure 7: Confusion matrix for Random Forest Classifier (Test set) 
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Figure 8: Confusion matrix for Random Forest Classifier (Train set) 

As expected, the RFC produced more False Positives than False Negatives. 

However, negative classes (households that are not at risk) are more frequent than 

positive classes. The model focuses on positive classes, and the proposed 

objective function is helping to reduce False Negatives, which is the desired 

characteristic for the case of disasters.  

The critical element for the hyperparameter optimization procedure is the 

confusion matrix of the predictive models, as logistics costs depend on False 

Positives and True Positives. True Negatives mean no delivery is required, and 

deprivation costs arise from False Negatives. Our methodology includes co-

optimization of MCC and NPV, where maximization of MCC aims to minimize social 

costs and maximization of NPV aims to minimize deprivation costs. 

2.5.3. Complementary descriptive analysis 

We conducted a descriptive analysis of False positives and False Negatives 

to complement the results above. Table 4 shows the average of each variable 

across the subpopulations. 

Table 4: Descriptive analytics of misclassified categories 

Variable 
False positives 
(N=164) 

False negatives 
N=(85) 

Terrain tracks (Yes=1) 30.49% (N=50) 41.18% (N=35) 

Paved tracks (Yes=1) 7.32% (N=12) 44.71% (N=38) 

Lighting pole (Yes=1) 12.2% (N=20) 85.88% (N=73) 

Own house (Yes=1) 88.41% (N=145) 67.06% (N=57) 
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Variable 
False positives 
(N=164) 

False negatives 
N=(85) 

Title of ownership (Yes=1) 10.37% (N=17) 40.0% (N=34) 

Concrete walls (Yes=1) 8.54% (N=14) 48.24% (N=41) 

Altitude 4001.51 3781.26 

Rural (Yes=1) 88.41% (N=145) 17.65% (N=15) 

Water network (Yes=1) 7.93% (N=13) 62.35% (N=53) 

Drainage network (Yes=1) 7.93% (N=13) 62.35% (N=53) 

Electric lighting (Yes=1) 71.34% (N=117) 98.82% (N=84) 

Candle lighting (Yes=1) 13.41% (N=22) 1.18% (N=1) 

Another lighting (Yes=1) 20.12% (N=33) 0.0% (N=0) 

GLP cooking (Yes=1) 15.85% (N=26) 62.35% (N=53) 

Manure cooking (Yes=1) 59.15% (N=97) 16.47% (N=14) 

Internet (Yes=1) 8.54% (N=14) 27.06% (N=23) 

Cellphone (Yes=1) 71.95% (N=118) 95.29% (N=81) 

TV color (Yes=1) 18.29% (N=30) 58.82% (N=50) 

Bicycle (Yes=1) 25.61% (N=42) 35.29% (N=30) 

Motorcycle (Yes=1) 23.17% (N=38) 40.0% (N=34) 

DVD (Yes=1) 8.54% (N=14) 23.53% (N=20) 

Car (Yes=1) 2.44% (N=4) 10.59% (N=9) 

Computer/laptop (Yes=1) 4.27% (N=7) 27.06% (N=23) 

Refrigerator (Yes=1) 0.0% (N=0) 8.24% (N=7) 

Per capita expenditure 3799.05 5789.32 

Young adult (Yes=1) 9.15% (N=15) 18.82% (N=16) 

Adult (Yes=1) 22.56% (N=37) 37.65% (N=32) 

Old adult (Yes=1) 26.83% (N=44) 31.76% (N=27) 

Old (Yes=1) 41.46% (N=68) 11.76% (N=10) 

overcrowding (Yes=1) 50.61% (N=83) 35.29% (N=30) 

Married (Yes=1) 33.54% (N=55) 31.76% (N=27) 

Literacy (Yes=1) 24.39% (N=40) 11.76% (N=10) 

No education (Yes=1) 79.27% (N=130) 48.24% (N=41) 

Postgraduate education 
(Yes=1) 

0.0% (N=0) 1.18% (N=1) 

Illness (Yes=1) 96.34% (N=158) 91.76% (N=78) 

Medical attention (Yes=1) 45.73% (N=75) 67.06% (N=57) 

Subsidized health insurance 
(Yes=1) 

86.59% (N=142) 69.41% (N=59) 

Disabilities (Yes=1) 45.12% (N=74) 25.88% (N=22) 

Authors' own elaboration. 

The False Positives are households characterized as poor in a multi-dimensional 

sense. Otherwise, the False Negatives are households with non-poor 

characteristics. From Table 4, we highlight the following features for False 

Positives: 7.32% of households have access to paved tracks and 12.20% to 

lighting poles, 8.54% have concrete walls, 7.93% have water and drainage 

network, 59.15% cook with manure, 8.54% have internet access, and 0% have a 

refrigerator. These features suggest that False Positives are poor households. We 
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must consider that 88.41% of them are rural, so for this case, they may have 

vulnerable conditions but might not be exposed to cold wave-related disasters.  

We highlight the following features for False Negatives: 44.71% of households 

have access to paved tracks and 85.88% to lighting poles, 48.24% have concrete 

walls, 62.35% have water and drainage network rather than using manure, 62.35% 

of households cook with GLP, 27.06% have internet access, and 8.24% have a 

refrigerator. According to this characterization, False Negatives are mostly non-

poor households associated with better urban infrastructure. 17.65% of these 

households are rural. False Negatives might be exposed to cold wave-related 

disasters but may not have vulnerability conditions. 

Regarding educational and health dimensions of vulnerability, False Positives have 

31.03% more uneducated household heads than False Negatives and have 

21.33% less access to medical attention and 17.18% more households with 

subsidized health insurance. Finally, on average, False Positives are settled at a 

higher altitude than False Negatives (220.25 m.a.s.l.) and have lower annual 

monetary earnings (US$590.58). 

2.6. Discussion and implications 

This section presents a discussion of the main results and the practical 

implications of these results for relevant stakeholders and decision-makers. 

2.6.1. Determinants of cold wave-related disaster risk 

RFC estimated features' importance to understand which features drive cold 

wave-related disaster risk at the household level. The results for the 15 most 

important features are shown in Figure 9. 

The most important features for prediction were household localization in a 

rural area (that accounts for the fact that the household is isolated in the space and 

systematically far away from principal urban settlements) and per capita 

expenditure (that accounts for short-run household purchase power). Moreover, 

the feature "Household resides in a rural area" carries twice the significance of per 

capita expenditure. Access to public goods (measuring the government's presence 

in public spaces where households are located) was also crucial for cold wave-

related disaster risk classification. Other important predictors were altitude (proxies 

for household exposure to shallow temperature events) and household materials 

of construction (concrete walls and concrete roofs). 
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Figure 9: Feature's importance from RFC 

Figure 10 estimates the average marginal effect or partial dependence plot 

for each feature in Figure 9. The axis is continuous for continuous variables and 

discrete for dummies. According to these results, rural households are 24% more 

likely to be at risk of being affected by cold wave-related disasters than urban ones. 

In contrast, having a lighting pole, a drainage network, and cooking by GLP 

reduces the probability of being at risk by 14%, 11%, and 15%, respectively. The 

higher the ranking in Figure 9, the greater the robustness of this average estimate. 

Interestingly, an increase in per capita expenditure lowers the probability of being 

at risk based on the magnitude of expenditure at different rates. For high-

expenditure households, an increase in expenditure is not related to a significant 

decrease in the probability of being at risk. For poor households, the impact of 

variations in expenditure is higher. Public goods and concrete on walls and roofs 

lower the probability of being at risk. 

Altitude partial dependence seems constant, but as indicators feature 

importance indicators suggest, it adds information. This means that for all the 

households, the probability of case risk does not vary with different altitude levels, 

but this may not be true for groups of households. As important features may not 

be significant in their average variation, exploration of heterogeneous effects is 

needed. However, it must be left for further research. 
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Figure 10: Top 10 Feature partial dependence on the probability of being at risk 

In Figure 10, the significance of each predictor is assessed based on the 

magnitude of its impact on the probability of being at risk and the variance of the 

partial dependence estimations. The feature "Household is rural" results in 

discernible differences in the probability of being at risk for the entire sample, 

indicating its significance. On the other hand, features like "Manure cooking" 

appear to be influential, but it is essential to quantify the confidence in the 

disparities between their values. For continuous features, this calculation may be 

more intricate, and we defer this discussion to future research, with reference to 

SHAP values for the task. 

The RFC estimator is robust to non-linearity, heteroscedasticity, and noise 

on predictors. As the construction of trees is based on bootstrap methods, the 

partial dependence estimates are a non-parametric estimator of the impact of 

exogenous variations on predictors into the target variable, disaster risk. 

Considering these results, we conclude that cold wave-related disaster 

vulnerability is shaped by economic deprivations, geographical localization in rural 

areas, and the degree of access to public goods in urban environments, including 

access to essential services. In this sense, to reduce vulnerability, we must act in 

line with disaster risk reduction main guidelines (Wright et al., 2020): it is necessary 

to make long-term investments that aim at systematically reducing vulnerabilities 
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to create resilience in communities by achieving economic and urban development 

of cities.  

Resilience is a goal that would be achieved slowly and requires much 

planning. Puno is a city that was built with scarce resources. Hence, there is an 

enormous potential for improvement, particularly regarding mitigating disaster 

risks. It is worth highlighting that in the short term, applied Machine Learning can 

be used to optimize resource utilization and, in the best of cases, save necessary 

resources that communities may invest in their future development (Bosher et al., 

2022). 

2.6.2. A proposal for improvement of the model 

The actual model has an accuracy of 73.85% on the test dataset. That means 

that if the model had been implemented in 2021 and all the demand points had 

been fulfilled with aid within the context of an intervention, 19.1% of households 

that would have demanded aid would have been excluded from the targeting. On 

the other hand, 32.41% of households that were unaffected would have been 

provided with aid, creating additional costs. 

The main pattern regarding False Positives and False Negatives was that 

poor households without risks were misclassified (False Positives), and non-poor 

households with risks were labeled non-risky (False Negatives). In this sense, 

additional costs related to False Positives might not be unjustified, as most 

households are poor. Considering False Negatives, the average household may 

be non-poor but still need aid to face cold waves. Considering statistical analysis, 

we recommend moving the classification threshold of the RFC to balance False 

Positives and False Negatives and achieve greater accuracy and sensitivity. The 

following Figure 11 shows the confusion matrix corresponding to a probability 

threshold of 42% (corresponding to the threshold that maximizes 𝑍𝑚 objective 

balance between accuracy and sensitivity): 
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Figure 11: Confusion matrix with new prediction threshold (Test set) 

The performance metrics of this confusion matrix are the following: 75.08% 

ROC-AUC, 74.34% accuracy, 75.94% F1-score, 51.05% MCC, and 86.52% 

sensitivity. This improvement can have a significant impact on the practice. If a 

humanitarian intervention had been implemented considering the confusion matrix 

in Figure 11, 13.48% of households would have generated deprivation costs (a 

percentual reduction of 29.42%). Although there are more False Positives, most of 

these households are poor, so aid would attend to other necessities embedded in 

their multiple vulnerabilities. Any humanitarian project that aims to mitigate the 

negative impacts of cold wave-related disasters may find this paper helpful since 

its methodology can be replicated for other case studies. 

2.6.3. Extra considerations about practical implementations 

Table 4 shows that both False Positives and True Positives are characterized 

as being poor, rural, and isolated in space. A humanitarian intervention would find 

reaching households with these characteristics more costly in a real-world 

scenario. In contrast, False Negatives and True Negatives are households settled 

in urban areas with transport infrastructure that reduces logistic costs. Although 

these households are easy to reach, it could be challenging to identify which would 

be the target of humanitarian intervention. The model in Figure 11 can improve this 

targeting. 
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Any practical implementation must consider the guidelines above. The main 

challenge is to attend to the demand from predicted positives. If the model in Figure 

7 is implemented, 32.34% of this demand is expected to be misallocated. However, 

considering that these households are poor, an excellent strategy is to integrate 

both the humanitarian intervention that aims to mitigate the impacts of cold wave-

related disasters and poverty and short-run hunger interventions. Integrating 

interventions would lead to a more efficient use of resources, assuming that poor 

households are vulnerable to food shortages and economic losses during months 

of cold temperatures in Puno. 

2.7. Chapter conclusions 

This paper focused on using Machine Learning to build proactive strategies for cold 

wave-related disaster preparedness in Puno. The aim was on households' disaster 

risk classification or identification of demand: a predictive classifier was built to 

identify households that are targets for humanitarian interventions. 

Puno has small cities; most of its population is settled in rural areas dispersed in 

space. The classifier identified the following prediction rules:  

Poor households in rural areas are vulnerable to cold wave-related disasters and 

need proactive humanitarian intervention. 

Beyond economic vulnerability, vulnerable households have poor urban 

infrastructure, including tracks, paths, lighting poles, and water and drainage 

networks. These features characterize households that are demand points of 

humanitarian interventions. 

The impact of health insurance, health status, and education is minor. Households 

with unhealthy members have a 0.8% higher probability of being at risk than 

households with healthy members on average. At the same time, households with 

graduate members have a 0.6% lower probability of being at risk than other 

households. 

The experimental setting allowed us to select RFC over ENLR as the best 

classifier, with an MCC of 48.64% and a sensitivity of 80.9% on the test dataset. 

This result represents a good baseline level for practical implementations because 

the model's accuracy is relatively high (73.82%), considering that predictions were 

made with a model trained with past data from 2018-2020. Thus, the model can 

perform a demand forecast with acceptable accuracy. 
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After performing a statistical analysis of False Negatives and False Positives, we 

considered it profitable to modify the probability threshold of the RFC to improve 

the model's performance. With a threshold of 42% instead of 50%, model accuracy 

improved to 74.34%, MCC to 51.05%, and sensitivity to 86.52%. This result has 

several practical implications. First, if this model is implemented, False Negatives 

would be reduced at the cost of more False Positives. That means that 

humanitarian operations targeting would improve at the cost of reaching more 

households that might not need supplies to face cold. The drawback is that such 

households, known as False Positives, are poor and isolated in space, so most 

kinds of interventions may find it costly to reach them. 

Even though the improved model misclassifies a higher frequency of False 

Positives, statistical analysis shows that these households have deprivations. 

Hence, those costs may be justified, especially if the humanitarian intervention is 

embedded in another, more comprehensive program. This scenario could be the 

case of a policy to mitigate food and hunger. Using the improved model would 

enormously impact the Machine Learning-targeted households.  

Consequently, Supervised learning offers a data-centered solution to the large-

scale problem of deciding where aid must be delivered. This solution is 

characterized by being detailed and disaggregated at the household level: model 

predictions can be used to decide which households will require a supply of aid. 

Decision-makers can implement proactive disaster preparedness strategies such 

as stock prepositioning, proactive delivery, and gradual delivery based on 

information drawn from the prediction of trained models (Apte and Yoho, 2011). 

This paper confirms previous literature findings regarding cold wave-related 

disaster risk mitigation. It brings new conclusions: physically vulnerable and 

economically deprived households are more likely to be affected by a cold-related 

disaster. The well-known prescription is to create community resilience with solid 

urban infrastructure, which is difficult to achieve in the short term.  

In addition, we suggest using Machine Learning to implement an automated 

classifier that identifies the demand in the context of uncertainty and intervenes in 

those demand points to mitigate short-term cold wave risks. This would improve 

disaster risk reduction decisions.  
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Better management of disaster risk is related to mitigated response and recovery. 

The model's implementation gives Puno opportunities to use the saved resources 

to carry on long-run tasks such as creating resilience. 

This paper is not free of limitations. The following limitations were identified: 

• Local effects were not estimated; hence, health and education might 

significantly impact the probability of being affected by cold waves for some 

households with specific characteristics. A complete analysis was not 

performed, just an average estimation of marginal effects. 

• Although the experimental setting is robust, real-world model 

implementation is vital to close the gap between academia and 

practitioners. This paper aimed to provide guidelines and, to the best of our 

ability, shed light on the uncertainty embedded in practical 

implementations. 

• The model can be further extended to consider more sophisticated 

predictors such as distance from households to main tracks, livestock, and 

area of land under cultivation, among others, that may improve the 

accuracy of the classifier. Measuring experience in cold waves as a proxy 

for risk resistance or disaster preparedness would improve accuracy (Chen 

et al., 2022). 

Since humanitarian interventions operate with scarce resources and must be 

optimized regardless of their localization or vulnerability condition, this paper sheds 

light on practical considerations of applied Machine Learning. One way to measure 

the contribution is to analyze the accuracy of model forecasts on real data. By 

doing this, practitioners may observe better Key performance indicators (KPIs), 

such as emergency response time, normal response time, total coverage, and 

demand fluctuations (Rejane et al., 2013). Consequently, this paper contributes to 

closing the gap between academia and practitioners toward an improved disaster 

risk management system based on data. The Puno community would benefit from 

the practical implementation of Machine Learning in disaster risk reduction. 
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3 
Identifying final demand points for aid in the aftermath of 
sudden-onset clime-related recurrent disasters in Peru 
using supervised learning  

3.1. Introduction 

There is an increasing concern about natural hazards worldwide, as they are 

becoming more frequent due to climate change and increasing pressure on natural 

resources. Less developed countries are more affected by recurrent natural 

hazards regarding human and economic losses (Guha-Sapir et al., 2015). Losses 

are linked to disaster risk, which depends on three factors: vulnerability, hazard, 

and exposure (Twigg, 2004). Consequently, less developed countries have been 

more affected by natural hazards due to poverty, inadequate infrastructure, and 

limited resources for disaster preparedness and response (Ghesquiere and Mahul, 

2010). Furthermore, recurrent natural hazards tend to produce long-term effects 

that harm the development of such countries. For instance, Akram et al. (2021) 

conclude that "disasters impede human development, and their effects are most 

pronounced in low and lower-middle-income countries." 

The disaster risk management lifecycle has five phases: prevention, 

preparedness, mitigation, response, and recovery. The first three phases are 

proactive and aim to minimize the impact of an expected disaster. These activities 

are crucial in the lifecycle of disaster management as they impact the cost and 

complexity of response and recovery activities. In the case of recurrent disasters, 

where exposure to natural hazards interacts with population vulnerability, planning 

for disaster risk management activities becomes particularly important (Bosher et 

al., 2021). Proactive disaster risk management activities can be seen as an 

investment that produces returns in the aftermath of disasters. 

In the presence of recurrent disasters, there is a reinforcement cycle between 

expected losses and investment in disaster risk mitigation and preparedness 

(Sodhi, 2016). This vicious cycle is challenging because investing in risk 

management activities is necessary to unlock a country's capability to reduce its 

disaster risk (UNDRR, 2020; ADB, 2015).  
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Less-developed countries often operate in a context of scarce resources, so 

decision-making planning is imperative for these cases. Then, decision-makers 

require high-quality data representing all the problem's edges. In disaster risk 

management activities, this bias causes an imbalance in demand and supply (for 

example, wrong stock prepositioning and, thus, material convergence). 

The demand for relief supplies must be dynamically estimated from status-

quo representative data to improve the disaster risk management activities in pre- 

and post-disaster areas. However, the availability of data representing the actual 

status quo is a big concern for decision-making in the aftermath of recurrent natural 

hazards (Linardos et al., 2022). This paper proposes using supervised learning 

algorithms to train predictive models to produce dynamic forecasts that can be 

used to make informed decisions. 

The core of the problem, at least in the disaster risk management domain, is 

that the future distribution of demand is unknown. This paper proposes a novel 

approach to identify final demand points after sudden-onset clime-related 

disasters. Thus, the specific objective of this paper is to train supervised learning 

binary classifiers to identify demand points using households’ observable 

characteristics. The disaster risk management domain demands the predictions to 

be aware of unmet demand (Silva and Leiras, 2021). For that, the classifiers 

minimize the false negatives (i.e., households classified as non-prone to disasters 

when they are prone to them).  

This paper assesses the Peruvian case study, a less-developed, low-income 

country (Annual Disaster Statistical Review, 2014). Considering the 2000-2023 

period, floods and landslides were the most frequent causes of disasters that 

affected communities in Peru, generating up to 4,171,481$ and 3,042,638$ total 

losses, respectively (EM-DAT, 2023). 

The contributions are twofold. First, a supervised learning approach is 

proposed to infer accurate classifiers for floods and landslides based on 

households’ vulnerability conditions. Such classifiers are flexible to adapt to 

domain requirements, such as the importance of unmet demand. Given some 

required characteristics, the models can be re-trained to update their performance 

or adapt to different realities within the same domain. Second, this paper deepens 

prediction explanations, which are also scarce in the literature.  
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In addition to academic contributions, the results contribute to a wide range 

of public and private stakeholders, helping in public policy design and disaster risk 

mitigation and preparedness. This paper closes by enumerating the research 

implications for disaster management that provide decision-makers with 

recommendations. This paper includes model implementation guidelines that may 

help them to operate with scarce resources, such as resource allocation, timely 

response, and improved targeting (Farazmehr and Wu, 2023; IFRC, 2013; OCHA, 

2015; WFP, 2018). A spatial decision-support display is built to illustrate the 

recommended implementation of the model results and define further research 

agenda.  

The rest of the paper is divided into five sections. Section 2 presents the 

theoretical foundation. Section 3 details the case and describes the materials and 

methods. Section 4 depicts the main results. Section 5 discusses how the results 

may be interpreted and used to formulate decisions regarding disaster risk 

management. Finally, Section 7 brings the conclusions and suggests further 

research avenues. 

3.2. Theoretical framework 
Several approaches oriented to prediction and planning for disaster risk 

management activities aim to exploit the recurrent nature of some disasters to 

develop early warning systems, automated logistics, demand forecasting, mapping 

of scenarios, and so on (Yuan and Moyaedi 2020; Zhang et al., 2019; Resch et al., 

2018). The predictive assessment is more relevant in a population affected by 

recurrent disasters. 

Although some disasters have a predictable pattern, Machine Learning and 

artificial intelligence methods are scarce in managing recurrent disasters (Behl and 

Dutta, 2019). Lin et al. (2020) predict aid demand from crowdsourcing platforms 

concerned about anticipated earthquake response. French et al. (2023) study the 

root causes of El Niño related recurrent floods and landslides and conclude that 

geophysical characteristics interact with exposure and vulnerability of Peru’s 

population and infrastructure to produce high levels of disaster risk that are 

recurrent because of institutional factors affecting the management of risks and 

disasters.  

This paper proposes using supervised learning to train classifiers for 

households affected by floods and landslides. The proposed predictive 

assessment contributes to disaster risk management in two ways: i. providing 

intelligent methods to target disaster preparedness activities, and ii. mapping the 
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impact of key features in prediction to derive vulnerability drivers and formulate 

disaster risk mitigation policies. 

3.2.1. Characterization of households’ disaster vulnerability 

This paper uses Peruvian population-representative stratified random 

sampling data to train supervised learning classifiers, which is uncommon in the 

literature. Some powerful approaches extract data from crowdsourcing platforms 

or social media such as Twitter or Facebook (Zhang et al., 2019; Eckhardt et al., 

2021). However, it is crucial to consider alternative approaches that are better 

suited to regions with a low ratio of Internet access (which is the case for Peru, 

which has unequal Internet access in their regions). In such realities, overcoming 

the participation bias is a challenge. 

The stratified random sampling method ensures that every household in the 

sampling area, or the final demand point, has a fair chance of being included in the 

analysis. Therefore, the sample distribution is representative of the population’s 

actual status quo. Under this approach, big data is not more important than good 

data (Jayawardene et al., 2021). That means quality must be preferred over 

quantity if data is used for decision-making. In contrast with information-scrapping 

approaches (Resch et al., 2018; Lin et al., 2020), classical statistical sampling is 

grounded in theory, and its use may contribute to further Machine Learning 

applications in disaster risk management (Jayawardene et al., 2021). 

The central theoretical hypothesis is that vulnerability shapes disaster risk 

(Twigg, 2004). Four general dimensions of vulnerability are considered: economic, 

health, social, and geographical. The economic dimension measures purchasing 

power and comprises household income, construction materials, equipment, and 

access to services (Tasnuva et al., 2020; Pessoa, 2012). The health dimension 

measures the members' health status, such as chronic and acute illness (Djalante 

et al., 2020). The social dimension represents the sociodemographic 

characterization by measuring unemployment, education achievement, sex, age, 

and marital status (Rapeli, 2017). The geographical dimension captures household 

location conditions, such as regional dummies and altitude, that make them 

susceptible to natural hazards (Mattea, 2019; Ullah et al., 2022). 

3.3. Materials and methods 

In this paper, we focus on the case of Perú, one of the countries most 

affected by clime-related disasters in Latin America. Between 2000 and 2022, Perú 
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was affected by 47 floods, 17 earthquakes, and 12 landslides (EM-DAT, 2023). 

Those were the most frequent disasters. While floods caused economic losses of 

3,237,000 USD and 823 deaths, landslides caused unrecorded damages and 317 

deaths.  

Peru has a population of 33.72 million people spread over an area of 

1,285,216 km², resulting in a population density of approximately 26.24 inhabitants 

per km². However, the population density varies significantly within the country. For 

example, Lima, the capital city, has a population of 11.82 million people living in 

an area of 2,672 km², resulting in a high population density of approximately 

4,425.97 inhabitants per km². In contrast, some regions of Peru are sparsely 

populated, such as Puno, with a population density of 16.28 inhabitants per km², 

and Pasco, with 10.03 inhabitants per km². 

Natural hazards typically affect rural regions that have a greater poverty rate. 

For instance, Ayacucho has a poverty rate of 64.8%. It is affected by landslides 

that happen without media coverage. Then Lambayeque, with a poverty rate of 

31.6%, is affected recurrently by floods that destroy houses and livelihoods yearly. 

Then Lima, with a poverty rate of 18.3%, is affected by earthquakes that, in contrast 

with floods and landslides, have happened once a decade. 

It is a challenge to manage risks in such a heterogeneous country. This paper 

aims to identify the final demand points for each type of disaster and then prescribe 

some decisions to operationalize the knowledge produced using supervised 

learning methods. This inherently data-centric solution adds significant value to 

society by reducing human suffering and offering tools to improve the quality of 

decisions taken by stakeholders. 

The following subsections detail the data gathering and data analysis 

methods. 

3.3.1. Data gathering methods 

This paper uses modules from the National Household Survey (NHS) carried 

out by the Peruvian National Institute of Statistics and Informatics in 2018-2021. 

The sampling method was stratified over political regions. Thus, the data provides 

an excellent quantitative representation of socioeconomic characteristics over 

urban and rural conglomerates.  

The target ground-truth classification labels were built using spatial 

processing tools. This labeling was done as follows. NHS provides geographical 

coordinates of households, and the following question is asked to the informers:  
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In the last 12 months, has your house been affected by natural disasters 

(drought, storm, plague, flood, etc.)? 

Thus, a household is affected by a natural hazard if the household head 

reports the above question. However, the NHS does not provide details about the 

type of disaster that affected a household. Hazard zones were built for Floods and 

Landslides to overcome this limitation using data from Peruvian public entities and 

Dottori et al. (2016).  

Figure 12: Hazard zones 

Figure 12a. Hazard zones for 
Floods and Landslides 

Figure 12b. Ground-truth 
Affected Households 2021 

  

Figure 12a shows Hazard zones that are geographical boundaries 

recurrently affected by a natural hazard. Data were extracted from the Ministerio 

del Ambiente (Minam) estimation of flood-prone urban areas, including tsunamis, 

to build the Flood Hazard layer. Dottori et al. (2016) provided a global flood hazard 

mapping that was joined with Minam layers to complement rural river-based floods. 

On the other hand, the Landslide Hazard layer is built upon data from the Global 

Landslide Hazard Map made by the Global Facility for Disaster Reduction and 

Recovery (GFDRR) using the mean annual rainfall-triggered landslide hazard 
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assessment for the period 1980-2018. The information from the GFDRR Hazard 

map was verified by historical data collected by Centro Nacional de Estimación, 

Prevención y Reducción del Riesgo de Desastres (Cenepred). 

Then, a household is affected by a flood/landslide if [1] it was affected by a 

natural hazard and [2] it is located within the boundaries of Flood 

Hazard/Landslide Hazard zones. This is formally defined in Equations 1 and 2 

Affected by Floods
i
= {

1 if an affected household is located in a Flood Hazard zone

0 otherwise                                                                             
  (1) 

Affected by Landslides
i
= {

1 if an affected household is located in a Landslide Hazard zone
0 otherwise                                                                                   

 (2) 

3.3.2. Data analysis method 

3.3.2.1. The classification problem 

The ground-truth label construction results in Figure 12b suggest that few 

households are inside Hazard zones and report being affected by a natural hazard. 

For floods, 1.20% of households in the sample were affected, and 5.45% for 

landslides. Hence, the classification problem is imbalanced. 

The classification problem is modeled as follows: 

Pr(Affected by Floods
i
=1)=F(Vulnerability

i
)    (3) 

Pr(Affected by Landslides
i
=1)=L(Vulnerability

i
)   (4) 

That is, the probability of a household being affected by floods or landslides 

is calculated as a function of 112 features describing multiple vulnerability 

dimensions. Equation 5 groups the features into four groups. 

Vulnerability
i
=[Economici,Sociali,Healthi, Geographical

i
]  (5) 

This procedure hypothesizes that a household affected by natural hazards is 

necessarily vulnerable or, at least, there is a strong dependence. Thus, the 

predictive performance of the algorithms depends on the degree of dependence 

between vulnerability and the outcome of the household located within a Hazard 

zone. The literature (Li et al., 2023; Lapietra et al., 2023) supports this hypothesis 

for the case of multidimensional vulnerability (Equation 5) (UNDRR, 2015). 

Furthermore, we seek empirical evidence for the same hypothesis in this paper. 

3.3.2.2. Machine Learning Pipeline 

Both functions F(.) and L(.) from Equations 3 and 4 must be learned from 

data using supervised learning algorithms. These functions predict the household 
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probability of being affected by Floods or Landslides, respectively. Then, if 

predicted probabilities for each household Pr(Affected by Floods
i
=1) and 

Pr(Affected by Landslides
i
=1) are greater than a threshold, defined as 50% by 

default, the model produces predictions.  

However, supervised learning through cross-validation may produce 

insufficient learning of minority classes or affected households, and learning may 

be biased towards the majority class or non-affected households (Luque et al., 

2019). If this limitation were not addressed, the classifier would not be aware of 

deprivation costs caused by the misclassification of affected households (Holguin-

Veras et al., 2013). That is, affected households are labeled as non-affected or 

False Negatives. Imbalanced learning techniques are applied in different steps of 

the machine-learning pipeline to overcome this limitation (Brownlee, 2020).  

The Machine Learning pipeline includes pre-processing, processing, and 

post-processing stages (Waring et al., 2020). The selected train-test split method 

is the stratified K-fold cross-validation, which keeps the same proportion of class 

labels in each fold during the training process to overcome bias from class 

imbalance. A second train-test split method is applied for model out-of-sample 

validation purposes. Model performance is evaluated in a one-period-ahead hold-

out test set. Model parameters and hyperparameters are estimated from 2018-

2020 data using stratified K-fold cross-validation and tested for 2021 data using a 

hold-out test set. The entire procedure is outlined in Figure 13, 
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Figure 13: Machine Learning pipeline 

Data pre-processing steps include feature scaling or normalization using the 

robust scaling method (Zheng and Casari, 2018). This is a variation of Standard 

Scaling that subtracts the median and scales the data to the interquartile range: 

𝑍 =
𝑋−𝑋𝑝50

𝐼𝑄𝑅𝑋
        (6) 

There are several supervised learning algorithms. The common procedure is 

to test several algorithms and keep the best performing on the experimental grid 

(Dantas et al., 2021). However, this approach was not considered because of the 

overwhelming number of experiments that would have to be run to reach the best-

performing model (and its best configuration of hyperparameters). Instead of using 

brute-force approaches (Pedregosa et al., 2012), the Bayesian search for 

hyperparameter optimization method was applied to the XGBoost supervised 

learning algorithm. 

Data processing considers the XGBoost algorithm for supervised learning for 

several reasons. This algorithm was selected due to its properties regarding 

robustness to outliers, noise, and feature selection (Chen et al., 2016).  XGBoost 

stands for eXtreme Gradient Boosting, an ensemble of gradient-boosted trees 

(More details in Section 4.2). This algorithm is known for excelling in online 

competitions (Kaggle, 2023). Furthermore, XGBoost trains faster than Random 

Forests and Neural Networks (Fauvel et al., 2022). XGBoost is also adaptable to 

a wide spectrum of particularities regarding the domain's nature that conditions the 
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dataset's characteristics. For these reasons, XGBoost was considered the best 

option to explore.  

Equation 5 shows the elements of the objective function of XGBoost: 

𝑜𝑏𝑗(𝜃) = 𝐿(𝜃) + Ω(𝜃)        (7a)  

𝐿(𝜃) = ∑ [𝑦𝑖 ln(1 + 𝑒
−�̂�𝑖) + (1 − 𝑦𝑖) ln(1 + 𝑒

�̂�𝑖)]𝑖     (7b) 

Ω(𝜃) = 𝐿1(𝜃) + 𝐿2(𝜃)        (7c) 

XGBoost is an ensemble algorithm composed of individual boosted decision 

tree classifiers trained with the CART algorithm such as Random Forests 

(Breiman, 2003). The CART algorithm searches for the best split that produces 

more loss change, measured by Equation 7a for each tree in the ensemble. Thus, 

the algorithm estimates weights for each additional tree to minimize the objective 

function in Equation 7a. Equations 7b shows the log-loss function and 7c, L1, and 

L2 regularization terms.  

Regarding model interpretability, feature selection helps the algorithm learn 

a parsimonious model in terms of predictors. Model complexity is measured by 

Ω(θ), which represents regularization terms. Predictions are made using 

regularized coefficients, so the higher the value of Ω(θ), the more complex the 

model. By regularizing the boosting process, we address feature selection. 

Features that do not improve the total loss (as defined in Equation 7a) are 

considered less important and may be discarded due to the definition of Ω(𝜃). 

Additional hyperparameters control different aspects of the algorithmic 

procedure. The performance of XGBoost is sensible to the choice of these 

hyperparameters, so these must be fine-tuned to maximize performance. Table 5 

defines the role of each parameter in the construction of the XGBoost ensemble: 

Table 5: Hyperparameter definitions 

Hyperparameter Description  

Ensemble  

𝐶𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑟𝑒𝑒 It is the subsample ratio of columns when constructing 

each tree.  

 

𝐶𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑙𝑒𝑣𝑒𝑙 is the subsample ratio of columns for each level.  

𝐶𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑜𝑑𝑒 is the subsample ratio of columns for each node  

𝑀𝑎𝑥𝑑𝑒𝑝𝑡ℎ Number of splits that define the total depth of each tree in 

the ensemble 
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Hyperparameter Description  

𝑁𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 Number of trees in the ensemble  

𝛾 Minimum loss reduction required to make an additional 

split 

 

𝜂 Make each update more conservative by constraining the 

loss reduction on each tree (helps in imbalanced learning). 

 

𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 Bootstrap subsample used in each tree  

𝑀𝑎𝑥𝑑𝑒𝑙𝑡𝑎𝑠𝑡𝑒𝑝 Make each update more conservative by constraining the 

loss reduction on each leaf (similar to 𝜂.) 

 

𝑃𝑜𝑙𝑖𝑐𝑦 Strategy for growing trees in the ensemble  

Objective function 
 

𝐿1 LASSO-type regularization term  

𝐿2 Ridge-regression regularization term  

Scale-pos-weight The relative cost of prediction error for the minority class  

The construction of the ensemble begins with a single decision tree built by 

subsampling columns according to 𝐶𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒 parameters (subsampling occurs 

once for every tree constructed). Trees are grown following rules depicted by 

parameters 𝛾, that imposes a lower bound to the loss reduction required for further 

splits, and 𝜂 and 𝑀𝑎𝑥𝑑𝑒𝑙𝑡𝑎𝑠𝑡𝑒𝑝 that imposes an upper bound to the loss reduction 

for each tree and leaf respectively. 

As with other tree-based ensemble algorithms, the size of the ensemble is 

given by the 𝑁𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 parameter. The depth of each tree is given by 𝑀𝑎𝑥𝑑𝑒𝑝𝑡ℎ, 

considering that, if this parameter is not tuned, trees may grow until prediction is 

fully accurate, which produces overfitting.  

As class labels are imbalanced, it is important to constraint loss reduction to 

prevent bias from updates learned from majority class labels. However, the "Scale-

pos-weight" parameter adds cost-sensitive learning because it re-weights the 

importance of the minority class in the objective function (Brownlee, 2020) 

(Equation 7a).  

The Policy parameter declares that the XGBoost algorithm must grow trees 

using an objective function (Equation 7a). However, when the first tree is learned, 

the algorithm captures what was already learned and then learns one new tree at 

a time; this is known as the additive learning strategy that makes the XGBoost 
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algorithm scalable to large samples. This is important because of the number of 

hyperparameters that must be tuned. 

The following Equation 8. 

𝑋𝐺𝐵𝑜𝑜𝑠𝑡(H) =

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝐶𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑡𝑟𝑒𝑒 = 𝑈[0,1]               

𝐶𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑙𝑒𝑣𝑒𝑙 = 𝑈[0,1]              

𝐶𝑜𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑜𝑑𝑒 = 𝑈[0,1]              

𝐿1 = 𝐿𝑂𝐺𝑈[𝐸
−2, 𝐸2]                      

𝐿2 = 𝐿𝑂𝐺𝑈[𝐸
−2, 𝐸2]                      

𝛾 = 𝑈[0.1,5]                                     

𝑃𝑜𝑙𝑖𝑐𝑦 = ['lossguide']                   

𝜂 = 𝑈[0.2,0.8]                                  

𝑀𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 𝐼𝑁𝑇𝑈[9,25]              

𝑁𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 𝐼𝑁𝑇𝑈[70,150]       

𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑈[0,1]                     

𝑀𝑎𝑥𝑑𝑒𝑙𝑡𝑎𝑠𝑡𝑒𝑝 = 𝐼𝑁𝑇𝑈[1,20]         

Scale-pos-weight = [
𝑁𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
]

      (8) 

Data post-processing includes the Generalized Index of Balanced Accuracy 

(GIBA) (García et al., 2020) metric for imbalanced learning. Although many other 

methods exist for learning imbalanced classes, using ad-hoc learning metrics 

complements cost-sensitive learning. The metric is defined by Equation 9, 

𝐺𝐼𝐵𝐴α(𝑀) = (1 + α𝐷𝑜𝑚)𝑀          (9) 

In Equation 9, M can be any metric but is defined here as the Geometric 

Mean Score (GMS) that is the geometric mean of True Positive Rate (TPR) 

(Sensitivity) and True Negative Rate (TNR)  (Specificity): 𝑀 = GMS = 𝑇𝑃𝑅 𝑇𝑁𝑅⁄ . 

Dominance is represented by 𝐷𝑜𝑚 = 𝑇𝑃𝑅 − 𝑇𝑁𝑅. This weights the metric 𝑀 to 

reduce the influence of majority class in 𝐺𝐼𝐵𝐴α. In this application, we set α = 0.9 

considering that minority class has high importance. This is supported by domain 

knowledge (i.e., minority class representing affected households that produce 

deprivation costs when misclassified) (Shao et al., 2019; Gomes et al., 2021). 

3.3.2.3. Bayesian Optimization Gaussian Process 

The Bayesian optimization algorithm for hyperparameter search is illustrated 

in Figure 5 and described in detail in Algorithm 1. Owen (2022) emphasizes the 

importance of automating hyperparameter tuning using data. Hyperparameter 

tuning is a methodology commonly used for AutoML (Hutter et al., 2019). This 
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approach allows the Machine Learning developer to achieve the highest 

performance metric without overfitting. Maximizing the performance metric is 

crucial for obtaining the best operational results. 

The hyperparameters of supervised learning algorithms (parameters that are 

not inferred from data) must be tuned so that the model can produce better 

predictions in terms of bias-variance (Owen, 2022). However, the tunning process 

must consider deprivation costs and sample imbalance while it considers 

hyperparameter space (that increases with the number of hyperparameters to 

tune). Hence, finding the set of hyperparameters that maximizes a custom 

performance metric in a hold-out test set is a combinatorial problem. 

In disaster risk management, scarce studies address hyperparameter 

tunning despite being needed to produce better predictive models (Linardos, 

2022). This paper performs hyperparameter tunning and proposes an optimization 

framework to automate searching for the optimal hyperparameters’ configuration. 

Bayesian Search optimization heuristic was used to develop an automated ML 

pipeline (Hutter et al., 2019). This development provides valuable methodological 

contributions to further academic research in disaster risk management. 

Bayesian optimization was selected for its simplicity compared to other 

hyperparameter search methods. A Gaussian Process was used as the surrogate 

model. The algorithm is explained in detail to provide a clear understanding of the 

methodology, enabling it to be replicated. The following is a detailed description of 

the Bayesian optimization algorithm: 

Algorithm 2: Bayesian optimization search procedure 

Bayesian-optimization search 

1. Define the hyperparameter space with the accompanied distributions H 

2. Define the objective function, in this case, 𝐺𝐼𝐵𝐴0.9(𝐺𝑀𝑆) 

3. Define the stopping criterion; in this case, the number of iterations is equal 

to 50  

4. Initializes the empty set 𝐷. Initialize the sample of several pairs of 

hyperparameter values and stratified cross-validation scores and store them 

in D (the sample size is equal to 30) 

5. Fit the probabilistic regression model/surrogate model, Gaussian Process 

(M), using the value pairs in D 
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5.1. Sample the next set of hyperparameters by utilizing the pairs suggested 

by the acquisition function, A: 

5.2. Perform optimization on the acquisition function, A, with the help of the 

surrogate model, M, to sample which hyperparameters are to be passed 

to the acquisition function 

6. Get the expected optimal set of hyperparameters based on the acquisition 

function, A 

7. Compute the cross-validation score using the objective function, 

𝐺𝐼𝐵𝐴0.9(𝐺𝑀𝑆), based on the output from Step 6.  

8. Add the hyperparameters and cross-validation score pair from Step 7 and 

Step 8 to set D.  

9. Repeat Steps 6 to 9 until the number of iterations equals 50. 

10. Trains on the full training set using the final hyperparameter values.  

Authors' own elaboration based on Owen (2022). 

3.4. Description of results 

3.4.1. Descriptive analytics 

This section presents and describes the main results. First, we characterize 

the study case in terms of features. Table 6 lists the complete set of features 

considered in the ML pipeline. 

Table 6: Empirical characterization of vulnerability 

Category Variable 

Household exterior 

and access to public 

goods 

Households with inlaid walls, households with painted 

walls, Outside tracks are paved, Outside tracks are 

terrain, Outside paths, Lighting poles, No public good. 

Ownership and 

physical 

characteristics 

Independent house, the household is a house, the 

household is totally owned, the household has a title of 

ownership, Concrete walls, Concrete floor, Concrete roof, 

Overcrowded bedrooms, No other rooms than bedrooms. 

Access and use of 

essential services 

Water network, Potable water, Quality water (chlorine), 

Daily access to water, Drainage network, Electric lighting, 

Candle lighting, Other lighting, GLP cooking, Wood 

cooking, Other cooking, Manure cooking, Phone, 

Cellphone, Cable TV, Internet 

Household income 

and assets 

Per capita expenditure, Radio, Color TV, Black-White TV, 

Sound equipment, DVD, Computer or laptop, Electric 
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iron, Electric blender, Gas stove, Refrigerator, Cloth 

washing machine, Microwave oven, Sewing machine, 

Bicycle, Car, Motorcycle, Tricycle 

Socio-

demographics 

The head is employed, The head is a woman, The head 

is married, The head is literate, The head has no 

education, The head achieved basic education, The head 

achieved technic education, The head achieved a college 

education, The head achieved pos-graduate education, 

The head is a young adult (17-35), The head is an adult 

(36-50), The head is an old adult (51-65), The head is old 

(more than 66) 

Health and 

insurance 

(for household 

members) 

Illness (last month), Accident (last month), Healthy (last 

month), Chronic illness, Medical intervention (last month), 

Contributory health insurance, Subsidized health 

insurance, Disabilities 

Geographical 

context 

The household is located in a rural area, Altitude, Region 

in which the household is located (25 categories) 

There are a total of 112 features. The comprehensive analytics may not be 

interesting, as households affected by Floods or Landslides represent 1.20% and 

5.45% of households in the sample, respectively. Then, descriptive statistics are 

reported for affected households. 

The average household affected by a Flood has an annual per capita 

expenditure of 1561$ (3.6), is located at 1692 m.a.s.l., and 55.34% of households 

affected by a Flood are located in rural areas. For the case of the average 

household affected by Landslides, the annual per capita expenditure is 1257$, 

located at 3048.503 m.a.s.l., and 74.95% of households are located in rural areas. 

These numbers show insights regarding poverty and geographical conditioning 

regarding disaster risk.  

Another important insight is related to health. Floods and Landslides seem 

related to 91.8% and 92.20% of households that report a member having a 

symptom of an acute illness. Despite being informative, the fact that acute illnesses 

are probably more a consequence than a cause of disaster risk must be 

considered. 
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Although Peru is highly diverse, the disaster risk seems to be concentrated 

in rural areas. Hazard zones mainly cover territories where impoverished and 

isolated households are located, far from major cities. Consequently, it can be 

affirmed that the disaster risk policy in Peru is a policy of territorial planning and 

rural development. 

3.4.2. Model training results 

3.4.2.1. Model performance 

This section presents results from XGBoost model training and 

hyperparameter optimization. Figure 14 shows the confusion matrix on the hold-

out test set for Floods and Landslides. 

 

Figure 14: Confusion matrixes for the hold-out test set 

The objective function tried to balance the trade-off between the accuracy of 

the minority class and the total accuracy. This task is NP-Hard, so a 

hyperparameter search heuristic, such as Bayesian Optimization, was 

implemented. The confusion matrix shows that the models have good performance 

for the minority class and medium performance for the majority class. Table 7 

shows the performance metrics that measure the success of the training process. 

𝐺𝐼𝐵𝐴𝛼 controls the optimization process. However, the value of GIBA_α 

captures the value of the geometric mean score but with lower values when the 

minority class is misclassified. The metrics tend to have better performance for the 

Landslides classifier. This may be due to differences in imbalance proportions (the 

households affected by Floods are a smaller proportion of the total sample and, 

thus, more imbalanced). The Matthews Correlation Coefficient (MCC) suggests 



68 

 

that the Landslides classifier performs significantly better among majority and 

minority classes. 

Table 7: Performance metrics in the hold-out test set 

Metric Floods Landslides 

Accuracy 82.57 88.85 

MCC 12.54 38.42 

Sensitivity 82.63 86.41 

Specificity 74.75 76.47 

Geometric mean 78.59 81.29 

𝐺𝐼𝐵𝐴α  62.0 67.0 

With an accuracy higher than 74% for both majority and minority classes, we 

highlight that the model's performance aligns with the state-of-the-art supervised 

learning classifiers reported in Linardos (2022). However, the performance is low 

in comparison with other approaches. Despite this fact, the classifier is evaluated 

in future data, which conditions accuracy and causes it to decay as it is more 

complex to predict what will happen in the future.  

We affirm that Floods and Landslides classifiers have acceptable 

performance that can be used for further operations. However, performance can 

be improved with additional information such as distance from rivers or other water 

corpses, slope magnitude, distance from mountains, clime, etc. An additional 

feature collection is left for further research or model implementation. 

3.4.2.2. Feature importances and partial dependence 

The proposed ML pipeline is expected to output an accurate and 

parsimonious model. The model is accurate. However, we analyze if it is 

compounded with several features or can be easily interpreted in terms of a small 

subset of features. 
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Figure 15:  Elbow plot for model feature importance  

XGBoost module allows to draw feature importances from information gain. 

It averages the gain across each ensemble tree, indicating the feature's importance 

(Pedregosa et al., 2011). Figure 15 shows the marginal average gain for each 

additional feature (the total gain is the sum of the average gain for all features), 

with the features being sorted by their importance (regional dummies were omitted 

from Figure 15 but analyzed separately below). 

A threshold of twelve features was selected for analysis. Each additional 

feature adds a negligible gain beyond this threshold for the Floods classifier. This 

result suggests that the remaining features are essential as a whole. For the 

Landslides classifier, a similar pattern is observed where each of the twelve most 

important features (or more) are important, and the remaining features are 

essential when grouped. 

The regional dummies caused 38.65% of the total gain for the Floods 

classifier and 48.10% for the Landslides classifier. Thus, households' localization 

matters in prediction. Figure 16 shows the importance of each classifier's location 

in a region. In the case of Floods, Puno, Huancavelica, and Ica regions are more 

prone to flooded households than the rest. On the other hand, Apurimac, Cusco, 
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and Ucayali are the regions with more households affected by Landslides. The 

region dummies capture the spatial distribution of the affected households. 

The case of Puno is remarkable as most households prone to floods lie within 

its geographic boundaries. Special attention must be given in decision-making to 

the regions targeted by the classifiers. 

 

Figure 16: Feature importance indicators for regional dummies 

Instead of a parsimonious model, a complex model was inferred from the 

feature space. However, Figure 15 suggests that the twelve most important 

features, other than regional dummies, may tell a story about the classification 

problem. The partial dependence method was selected to analyze the impact of 

the most important features on predictions. This method creates an interpretable 

tool that maps the change of predicted probabilities caused by a change in feature 

values (ceteris-paribus). Figures 17 and 18 show the partial dependence plots for 

Floods and Landslides classifiers.  

3.4.2.3. Interpretation of Floods Classifier 

We use several variables to measure the degree of rurality a household is 

exposed to, including the presence of public goods, cooking with manure, water 

quality, access to potable water, lighting poles, drainage networks, daily water 
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access, and whether the household is located in a rural area. The "Rural" variable 

indicates that the household is part of a community with fewer than 2,000 

inhabitants. Cooking with manure, for example, suggests a higher degree of spatial 

isolation and exclusion from the gas or wood cooking fuel market. Households that 

cook with manure are 13.35% more likely to be affected by floods. 

Certain urban conditions can make households more susceptible to Floods. 

Access to potable water, lighting poles, and drainage networks increases the 

likelihood of a household being affected by floods. However, daily access to water 

(Water daily access) of optimal chlorine composition (Water quality chlorine) 

reduces this probability.  

Owning a computer or laptop also decreases the likelihood of being affected 

by floods. Owning a bicycle may be more common in rural areas or less-developed 

urban settlements and is associated with an increased probability of being affected 

by floods. Similarly, households headed by married individuals are also more likely 

to be affected by floods. 

It is important to note that the presence of certain urban public goods (such 

as paved roads and lighting poles) can increase susceptibility to Floods, as 

suggested by the "no public good variable". This suggests that floods are more 

common in less-developed urban settlements than in isolated rural households. 

Floods are rare in developed urban areas. 

Finally, Floods are associated with acute illness, providing valuable 

information. However, acute illness may not be observable before floods occur 

since acute illnesses are a consequence rather than a cause. This variable may 

be excluded from training if the model is intended for use in real-world operations. 

The estimated variance of predictions is included in estimations. The 

variance is lower for “no public good” and “manure cooking” with respect to other 

features. However, the magnitude of variance indicates that the effect of features 

is heterogeneous. Individual effects may not be significant, but when several 

features change together, the probabilities change to produce positive risk 

classifications. We must leave the track of heterogeneous effects to further 

research, as it is beyond the scope of research. 
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Figure 17: Partial dependence plots for Floods classifier 

3.4.2.4. Interpretation of Landslides Classifier 

This classifier is different from the Floods one in terms of the marginal impact 

of each feature. As was depicted before, the total information gain is more evenly 

distributed between features. Thus, the impact of an individual feature in prediction 

is small.  

In contrast to the case of Floods, long-run wealth seems to be more important 

as the probability of being affected by a Landslide is lower for households with an 

Electric iron, Refrigerator, GLP cooking, Computer or laptop, and Washing 

machine. Furthermore, household construction materials are also important as 

Landslides susceptibility decreases for households made of Concrete walls, 

Concrete roofs, and Inlaid walls. In consequence, long-run wealth protects 

households from being affected by Landslides. 

Rural communities are more affected by Landslides. In Rural Perú, finding 

families that have built their houses with improvised construction materials is a 

pattern. This pattern is stronger in households located at higher altitudes that, in 

the case of Peru, are located at larger distances from cities and markets (Gonzales 

de Olarte, 2021). The altitude feature is continuous, and the average marginal 

impact is non-linear. From 0 to 900 m.a.s.l., the probability increases from 0% to 
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25% (and the variance of predicted probabilities is minimal), then the probability 

oscillates from 901 to 4000 m.a.s.l., having the highest value (27.5%) at 3700 

m.a.s.l..  

Similar to the case of floods, most variables have high variance estimates; 

this is also a consequence of the imbalanced nature of class labels. However, 

“altitude” has a low variance that suggests that it affects the prediction significantly. 

“Employment” has a variance greater than other features. The high variance of 

estimates suggests heterogeneous effects. That means that the classification 

function is strongly non-linear in features. 

 

Figure 18: Partial dependence plots for Landslides classifier 

3.5. Practical Implications for Humanitarian Operations 

This paper delivers two main products oriented to practitioners, managers, 

operations planners, and policymakers: the classifiers and the interpretation of 

feature importance. After rigorous research on methodological issues, the authors 

state that the main objectives of this research were achieved in the case of floods 

and landslides in Peru.  

The floods and landslides classifiers can extrapolate their rules to one-year-

ahead data with an accuracy of 78.59% and 81.29% for floods and landslides 
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(corrected for class imbalance), respectively. The proposed ML pipeline is oriented 

to create high-performing classifiers when class labels are imbalanced. To achieve 

high accuracy, the ML pipeline is built with XGBoost supervised learning algorithm, 

cost-sensitive learning, custom performance metric, and Bayesian-optimization 

hyperparameter search.  

Based on the information gain indicator for each feature, the twelve most 

important features were selected to interpret the rules drawn from XGBoost based 

on the marginal change in prediction for the average household. In statistical 

modeling, this method is known as average marginal effects. The computation of 

partial dependence was done to interpret the impact of the features on prediction 

and generate interpretable insights. 

The humanitarian problem raised by recurrent disasters raises the question: 

how can human suffering be reduced in crises that combine vulnerability and 

recurrent exposure to natural hazards (Leiras et al., 2017)? We propose adding 

value to the formulation of the solution by having an accurate estimate of the future 

demand distribution. We list the following practical implications of the results for 

this specific context: 

✓ This paper describes a blueprint that can produce status-quo representative 

demand predictions using computational tools. Thus, further research should 

aim to overcome high computational requirements. 

✓ The model can be implemented in practice in its current version. However, we 

recommend improvements to address its probable lack of empathy, 

transparency, and ethical concerns.   

✓ Predictions made by the classifiers depend on a probability threshold. The 

closer the households' predicted probabilities are to the threshold, the more 

uncertain their outcome. 

✓ In humanitarian operations, uncertainty must be communicated to 

stakeholders. 

✓ Uncertainty should be treated by additional techniques such as threshold 

tunning, etc.  

✓ The data was triangulated from different resources without finding 

inconsistencies. These data collection methods add reliability to this paper's 

practical implications. 
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✓ The learned classifiers are extrapolated to out-of-sample data to robustly 

generalize insights, including validating the model through computational 

experiments. 

✓ Rural households with poor construction materials located at higher altitudes 

and deprived of elementary assets are susceptible to Landslides. 

✓ Rural households in poor and small settlements (manure-cooking households 

with lighting poles, drainage networks, paved tracks, and paths) with access to 

potable water are susceptible to Floods. 

✓ Deploying aid supplies to households with these specific characteristics may 

create ethical concerns in the practice as households that do not share 

characteristics would not be targeted for aid.  

✓ Statistical methods such as proxy-means testing in microeconomic poor-

targeting programs such as Conditional Cash Transfer Ingreso Solidario in 

Colombia have proven to improve targeting and reduce ethical concerns. 

✓ Spatial analysis is essential to make decisions with data. Further facility 

location or routing formulations are encouraged to prescribe solutions for the 

humanitarian problem of recurrent disasters.  

3.6. Chapter conclusions 

This paper has applied supervised Machine Learning to train classifiers to 

identify final demand points after recurrent disasters. The Peruvian Case study was 

analyzed. Floods and Landslides were addressed because they were the most 

critical recurrent disasters that affected households over the entire Peruvian 

geographical boundaries.  

The main contribution of this paper is that it provides the stakeholders with a 

method to estimate the future distribution of demand for aid with state-of-the-art 

accuracy. Second, but not less important, is that decision-makers are provided with 

an interpretation of model predictions that allows them to understand the logic 

behind the model's outcome. In this sense, the model allows exploiting available 

data to provide decision-making tools.  

The authors believe that data-driven strategies may benefit humanitarian 

operations and, thus, add significant value to society. However, the fact that this 

data is just an input for further DRM policies must be highlighted. In this regard, 

this paper also provides guidelines for potential users. An explicit limitation is that 

this research was done under scarce collaboration with practitioners, so further 

research should be focused on generating insights from practical implementations. 
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Another limitation is that this paper does not contribute to mapping uncertain 

scenarios. It just provides a point-prediction demand estimation. However, future 

research may shed light on uncertainty by embedding classifiers into a 

mathematical optimization framework to prescribe a different decision for each 

scenario provided by the households' characteristics (Bertsimas and Kallus, 2020). 

The authors state that research on these formulations may produce even better 

solutions. 

The application of our results might impact the vicious cycle in which the 

impact of disasters shapes further investments in disaster risk management. The 

classifiers provide an intelligent data-driven targeting method that saves costs by 

guaranteeing accuracy. Additionally, the paper provides guidelines to address 

efficiency in aid distribution, such as facility location and vehicle routing 

formulations. 

Finally, the authors call to action for humanitarian logisticians, disaster risk 

managers, and other stakeholders. Recurrent disasters are increasingly becoming 

a challenge for several countries. Furthermore, they challenge the entire humanity. 

Thus, although research in this area is relevant, real action must be taken for the 

benefit of the future. 
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4 
Conclusions and recommendations 

This research has modeled the Cold waves, Floods, and Landslides disaster 

risk, considering household characteristics as indicators of multidimensional 

vulnerability.  

In contrast with previous literature, multiple dimensions of vulnerability are 

being considered, and the predictive approach is complemented by explanatory 

analytics. 

Rural households seem to be the most affected by Cold waves and 

Landslides in Andean regions located at higher altitudes. Floods affect households 

that are located next to water corpses at lower altitudes. 

 

Furthermore, households’ construction materials were important predictors 

for the three classifiers. Hence, this research highlights the importance of risk 

mitigation policies oriented to improve housing to create resilience and mitigate 

risks. 

This research brings insights regarding the statistical association between 

multidimensional vulnerability and disaster risk reported in the literature. There are 

several determinants of whether a household is affected by Cold waves, Floods, 

or Landslides. However, such determinants differ with the type of disaster.  

In the case of Cold waves, economic poverty determines the outcome of a 

household during extreme temperature events. In the case of Floods, affected 

households are located in semi-urban settlements with inadequate infrastructure. 

For the case of Landslides, rural poor households located at higher altitudes are 

the target. Different policies may address the risks of these households. 

Recurrent multi-hazards (Floods and Landslides) may affect Peruvian 

households in the context of El Niño. Risk reduction and disaster preparedness 

policies must be planned proactively to improve the quality of life and reduce 

human suffering caused by consequent acute diseases and infrastructure losses. 

Implementing the obtained classifiers in actual operations is a challenging 

task. The first paper concerns how the Cold waves-related disasters classifier can 

contribute to real operations. It maps the impact of each feature in prediction. It 
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proposes techniques such as statistical analysis and threshold tuning to improve 

the quality of decisions supported by the usage of the model. 

The second paper provided guidelines for practical implementations; 

however, following them may not necessarily produce a successful 

implementation. Trial and failure are needed to improve iteratively the model in 

real-world disaster risk management operations. 

Another contribution to the literature is that this research has provided 

insights into hyperparameter optimization techniques and showed that the learning 

process can be automated for disaster risk management of recurrent disasters. In 

short, we developed Machine Learning pipelines that allow computers to learn 

classifiers by themselves, with reduced human interaction. The authors encourage 

using such pipelines as they lead to optimal model configuration with data that can 

be directly observed from reality. 

The principal implication of this research is that it provides a management 

strategy that impacts the pre-disaster management phases. These phases are 

crucial for the entire lifecycle and the vicious cycle of managing risks and disasters.  

Further research must be focused on estimating causal impacts to improve 

policymaking and proposing location routing problems to plan aid distribution and 

operate at a lower cost. Several methods may be used for these purposes. 

Machine Learning is an applied science, so the best option for further 

research must be to improve the model's performance. This improvement can be 

achieved with more features (such as distances from water corpses, the slope in 

which each household is located, etc.), better Machine Learning pipelines (with 

other supervised learning algorithms such as neural networks), and the use of 

exact methods for hyperparameter optimization or improved heuristics. 

Additionally, we encourage exposing the classifiers to real-world implementations. 

By doing this and consequently updating the models, they can better adapt to 

reality. 



79 

 

References 

ADB, 2015. Private Sector Disaster Preparedness and Recovery: A 

Guidebook for Business in Asia. Asian Development Bank. Available online: 

https://www.adb.org/sites/default/files/publication/168205/private-sector-disaster-

preparedness-recovery-guidebook.pdf. 

Akram, A., Jamil, F., & Alvi, S. (2022). The effects of natural disasters on 

human development in developing and developed countries. International Journal 

of Global Warming, 27(2), 155. https://doi.org/10.1504/IJGW.2022.123279 

Alarcón, C., Trebejo, I., & FAO-SENAHMI. (2010). Atlas de helada del Perú. 

Retrieved from https://repositorio.senamhi.gob.pe/handle/20.500.12542/359 

Amirkhani, M., Ghaemimood, S., von Schreeb, J., El-Khatib, Z., & Yaya, S. 

(2022). Extreme weather events and death based on temperature and CO2 

emission – A global retrospective study in 77 low-, middle- and high-income 

countries from 1999 to 2018. Preventive Medicine Reports, 28, 101846. 

https://doi.org/10.1016/j.pmedr.2022.101846 

Bertsimas, D., & Kallus, N. (2020). From Predictive to Prescriptive Analytics. 

Management Science, 66(3), 1025–1044. https://doi.org/10.1287/mnsc.2018.3253 

Besiou, M., & Van Wassenhove, L. N. (2021). System dynamics for 

humanitarian operations revisited. Journal of Humanitarian Logistics and Supply 

Chain Management, 11(4), 599–608. https://doi.org/10.1108/jhlscm-06-2021-0048 

Bosher, L., Chmutina, K., & van Niekerk, D. (2021). Stop going around in 

circles: towards a reconceptualisation of disaster risk management phases. 

Disaster Prevention and Management: An International Journal, 30(4/5), 525–537. 

https://doi.org/10.1108/DPM-03-2021-0071 

Bottou, L. (2010). Large-Scale Machine Learning with Stochastic Gradient 

Descent. In Proceedings of COMPSTAT'2010 (pp. 177–186). Physica-Verlag HD. 

https://doi.org/10.1007/978-3-7908-2604-3_16 

 

https://www.adb.org/sites/default/files/publication/168205/private-sector-disaster-preparedness-recovery-guidebook.pdf
https://www.adb.org/sites/default/files/publication/168205/private-sector-disaster-preparedness-recovery-guidebook.pdf
https://repositorio.senamhi.gob.pe/handle/20.500.12542/359


80 

 

Brownlee, J. (2020). Imbalanced classification with Python: better metrics, 

balance skewed classes, cost-sensitive learning. Machine Learning Mastery. 

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting 

system. In Proceedings of the 22nd acm sigkdd international conference on 

knowledge discovery and data mining (pp. 785-794). 

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation 

coefficient (MCC) over F1 score and accuracy in binary classification evaluation. 

BMC Genomics, 21(1), 1-13. 

Christian, J. I., Basara, J. B., Hunt, E. D., Otkin, J. A., Furtado, J. C., Mishra, 

V., Xiao, X., & Randall, R. M. (2021). Global distribution, trends, and drivers of flash 

drought occurrence. Nature Communications, 12(1). 

https://doi.org/10.1038/s41467-021-26692-z 

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, 

P. (2011). Natural Language Processing (Almost) from Scratch. Journal of 

Machine Learning Research, 12, 2493-2537. Retrieved from 

https://dl.acm.org/doi/10.5555/1953048.2078195 

CRED Centre for Research on the Epidemiology of Disasters (2022). EM-

DAT The International Disaster Database [Data set]. Retrieved from 

https://public.emdat.be 

Dantas, L. F., Peres, I. T., Bastos, L.S., Marchesi, J.F., De Souza,G.F., 

Gelli,J.G.M…& Bozza,F.A.(2021). App-based symptom tracking to optimize 

SARS-CoV-2 testing strategy using Machine Learning. PLoS One 

,16(3),e0248920. 

Eckhardt, D. ,Leiras, A. & Thomé, A. M. T. (2019). Systematic literature 

review of methodologies for assessing the costs of disasters. International Journal 

of Disaster Risk Reduction ,33 ,398–416 

.https://doi.org/10.1016/j.ijdrr.2018.10.010 

Eckhardt,D .,& Leiras,A .,& Thomé,A.M.T.(2022). Using Social Media for 

Economic Disaster Evaluation: A Systematic Literature Review and Real Case 

Application. Natural Hazards Review, 23(1). 

https://doi.org/10.1061/(asce)nh.1527-6996.0000539 

https://public.emdat.be/


81 

 

F. Hutter, L. Kotthoff, & J. Vanschoren (Eds.) (2019). Automated Machine 

Learning: Methods, Systems and Challenges. In The Springer Series on 

Challenges in Machine Learning. Springer International Publishing. 

https://doi.org/10.1007/978-3-030-05318-5 

Fauvel,K .,& Fromont,E .,& Masson,V.,& Faverdin,P. ,& Termier, A. 

(2022).XEM: An explainable-by-design ensemble method for multivariate time 

series classification. Data Mining and Knowledge Discovery, 36(3), 917–957. 

https://doi.org/10 .1007/s10618-022-00823-6 

French, A., Mechler, R., Arestegui, M., MacClune, K., & Cisneros, A. (2020). 

Root causes of recurrent catastrophe: The political ecology of El Niño-related 

disasters in Peru. International Journal of Disaster Risk Reduction, 47, 101539. 

Ghesquiere, F., & Mahul, O. (2010). Financial protection of disaster risks: is 

the systemic risk transfer mechanism taking shape? The World Bank Research 

Observer, 25(1), 77-111. 

Giovanelli,J .,& Bilalli,B .,& Abelló Gamazo,A. (2021) .Effective data pre-

processing for AutoML. In Proceedings of the 23rd International Workshop on 

Design, Optimization, Languages and Analytical Processing of Big Data (DOLAP): 

colocated with the 24th International Conference on Extending Database 

Technology and the 24th International Conference on Database Theory 

(EDBT/ICDT 2021): Nicosia, Cyprus, March 23 ,2021(pp .1 -10). CEUR-WS.org. 

Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking inside the 

black box: Visualizing statistical learning with plots of individual conditional 

expectation. Journal of Computational and Graphical Statistics, 24(1), 44-65. 

Guha-Sapir, D., Hoyois, P., & Below, R. (2015). Annual Disaster Statistical 

Review 2014: The numbers and trends. Brussels: Centre for Research on the 

Epidemiology of Disasters (CRED). 

Gutjahr,W.J. & Fischer,S.(2018). Equity and deprivation costs in 

humanitarian logistics. European Journal of Operational Research, 270(1), 185–

197. https://doi.org/10 .1016/j.ejor .2018 .03 .019 

Hastie,T., Tibshirani,R., Friedman,J.H., & Friedman,J.H. (2009). The 

elements of statistical learning: data mining, inference, and prediction (Vol.2, pp.1-

758). New York: springer. 

https://doi.org/10.1007/978-3-030-05318-5


82 

 

Holguín-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L. N., & Aros-

Vera, F. (2013). On the appropriate objective function for post-disaster 

humanitarian logistics models. In Journal of Operations Management (Vol. 31, 

Issue 5, pp. 262–280). Wiley. https://doi.org/10.1016/j.jom.2013.06.002 

Hyperopt: A Python library for distributed asynchronous optimization of 

difficult search spaces, which includes support for both global and local 

optimization algorithms. Reference: Bergstra, J., Yamins, D., & Cox, D. D. (2013). 

Making a Science of Model Search: Hyperparameter Optimization in Hundreds of 

Dimensions for Vision Architectures. Proceedings of the 30th International 

Conference on Machine Learning (ICML-13). 

IFRC. (2013). Disaster risk reduction: Saving lives and livelihoods. 

International Federation of Red Cross and Red Crescent Societies. 

Jackins, V., Vimal, S., Kaliappan, M., & Lee, M. Y. (2021). AI-based smart 

prediction of clinical disease using random forest classifier and Naive Bayes. The 

Journal of Supercomputing, 77, 5198-5219. 

Jardim, R., dos Santos, M., Neto, E., Muradas, F. M., Santiago, B., & Moreira, 

M. (2022). Design of a framework of military defense system for governance of 

geoinformation. In Procedia Computer Science (Vol. 199, pp. 174–181). Elsevier 

BV. https://doi.org/10.1016/j.procs.2022.01.022 

Keja-Kaereho, C., & Tjizu, B. R. (2019). Climate Change and Global 

Warming in Namibia: Environmental Disasters vs. Human Life and the Economy. 

In Management and Economics Research Journal (Vol. 5, Issue 1, p. 1). HATASO 

Enterprises LLC. https://doi.org/10.18639/merj.2019.836535 

Kim, Y., & Sohn, H.-G. (2018). Disaster Risk Management in the Republic of 

Korea. Springer Singapore. https://doi.org/10.1007/978-981-10-4789-3 

Li, X., Caragea, C., Caragea, D., Imran, M., & Ofli, F. (2019). Identifying 

disaster damage images using a domain adaptation approach. Proceedings of the 

International ISCRAM Conference, 2019-May(May 2019), 633–645. 

Lin, A., Wu, H., Liang, G., Cardenas-Tristan, A., Wu, X., Zhao, C., & Li, D. 

(2020). A big data-driven dynamic estimation model of relief supplies demand in 

urban flood disaster. International Journal of Disaster Risk Reduction, 49, 101682. 

https://doi.org/10.1016/j.ijdrr.2020.101682 

https://doi.org/10.1016/j.jom.2013.06.002
https://doi.org/10.1016/j.procs.2022.01.022
https://doi.org/10.1016/j.ijdrr.2020.101682


83 

 

Linardos, V., Drakaki, M., Tzionas, P., & Karnavas, Y. (2022). Machine 

Learning in Disaster Management: Recent Developments in Methods and 

Applications. Machine Learning and Knowledge Extraction, 4(2), 446–473. 

https://doi.org/10.3390/make4020020 

Lopez, C., Marti, J. R., & Sarkaria, S. (2018). Distributed reinforcement 

learning in emergency response simulation. IEEE Access, 6, 67261-67276. 

López-Bueno, J. A., Navas-Martín, M. Á., Díaz, J., Mirón, I. J., Luna, M. Y., 

Sánchez-Martínez, G., Culqui, D., & Linares, C. (2021). The effect of cold waves 

on mortality in urban and rural areas of Madrid. Environmental Sciences Europe, 

33(1). https://doi.org/10.1186/s12302-021-00512-z 

Luque, A., Carrasco, A., Martín, A., & de Las Heras, A. (2019). The impact 

of class imbalance in classification performance metrics based on the binary 

confusion matrix. Pattern Recognition, 91, 216-231. 

Mattea, S. (2019). Exploring spatial sources of preference heterogeneity for 

landslide protection. Land Economics, Vol. 95 No. 3, pp. 333-352. 

Micheletti, N., Foresti, L., Robert, S., Leuenberger, M., Pedrazzini, A., 

Jaboyedoff, M., & Kanevski, M. (2013). Machine Learning Feature Selection 

Methods for Landslide Susceptibility Mapping. In Mathematical Geosciences (Vol. 

46, Issue 1, pp. 33–57). Springer Science and Business Media LLC. 

https://doi.org/10.1007/s11004-013-9511-0 

OCHA. (2015). Preparedness and contingency planning for humanitarian 

response. United Nations Office for the Coordination of Humanitarian Affairs. 

Optuna: A next-generation hyperparameter optimization framework that is 

designed to be highly scalable and versatile, with support for various optimization 

algorithms and ML libraries. Reference: Akiba, T., Sano, S., Yanase, T., Ohta, T., 

& Koyama, M. (2019). Optuna: A Next-generation Hyperparameter Optimization 

Framework. Proceedings of the 25th ACM SIGKDD International Conference on 

Knowledge Discovery & Data Mining (KDD '19). 

Owen, L. (2022). Hyperparameter tuning with python: boost your Machine 

Learning model's performance via hyperparameter tuning. Packt Publishing, 2022 

https://doi.org/10.3390/make4020020
https://doi.org/10.1007/s11004-013-9511-0


84 

 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, 

O., ... & Duchesnay, É. (2011). Scikit-learn: Machine Learning in Python. The 

Journal of Machine Learning Research, 12, 2825-2830.  

Quiliche, R. & Mancilla, L. (2022, January 10). Determinantes de la 

diversificación de ingresos en los hogares rurales del Perú. 

http://hdl.handle.net/20.500.12404/21237 

Quiliche, R., Rentería-Ramos, R., de Brito Junior, I., Luna, A., & Chong, M. 

(2021). Using Spatial Patterns of COVID-19 to Build a Framework for Economic 

Reactivation. In Sustainability (Vol. 13, Issue 18, p. 10092). MDPI AG. 

https://doi.org/10.3390/su131810092 

Ramos, M.-H., Mathevet, T., Thielen, J., & Pappenberger, F. (2010). 

Communicating uncertainty in hydro-meteorological forecasts: mission 

impossible? In Meteorological Applications (Vol. 17, Issue 2, pp. 223–235). Wiley. 

https://doi.org/10.1002/met.202 

Regal Ludowieg, A., Ortega, C., Bronfman, A., Rodriguez Serra, M., & 

Chong, M. (2022). A methodology for managing public spaces to increase access 

to essential goods and services by vulnerable populations during the COVID-19 

pandemic. Journal of Humanitarian Logistics and Supply Chain Management, 

12(2), 157–181. https://doi.org/10.1108/JHLSCM-02-2021-0012 

'Reisinger, Andy, Mark Howden, Carolina Vera, et al. (2020) The Concept of 

Risk in the IPCC Sixth Assessment Report: A Summary of Cross-Working Group 

Discussions. Intergovernmental Panel on Climate Change, Geneva, Switzerland. 

pp15 

García, V., Sánchez, J. S., & Mollineda, R. A. (2012). On the effectiveness 

of preprocessing methods when dealing with different levels of class imbalance. 

Knowledge-Based Systems, 25(1), 13–21. doi:10.1016/j.knosys.2011.06.013 

Renteria, R., Chong, M., de Brito Junior, I., Luna, A., & Quiliche, R. (2021). 

An entropy-based approach for disaster risk assessment and humanitarian 

logistics operations planning in Colombia. In Journal of Humanitarian Logistics and 

Supply Chain Management (Vol. 11, Issue 3, pp. 428–456). Emerald. 

https://doi.org/10.1108/jhlscm-03-2020-0018 

http://hdl.handle.net/20.500.12404/21237
https://doi.org/10.3390/su131810092
https://doi.org/10.1002/met.202
https://doi.org/10.1108/jhlscm-03-2020-0018


85 

 

Revich, B. A., & Shaposhnikov, D. A. (2016). Cold waves in southern cities 

of European Russia and premature mortality. In Studies on Russian Economic 

Development (Vol. 27, Issue 2, pp. 210–215). Pleiades Publishing Ltd. 

https://doi.org/10.1134/s107570071602012x 

Sahana, M., Rehman, S., Paul, A. K., & Sajjad, H. (2019). Assessing socio-

economic vulnerability to climate change-induced disasters: evidence from 

Sundarban Biosphere Reserve, India. In Geology, Ecology, and Landscapes (Vol. 

5, Issue 1, pp. 40–52). Informa UK Limited. 

https://doi.org/10.1080/24749508.2019.1700670 

Šakić Trogrlić, R., van den Homberg, M., Budimir, M., McQuistan, C., 

Sneddon, A., & Golding, B. (2022). Early Warning Systems and Their Role in 

Disaster Risk Reduction. In Towards the "Perfect" Weather Warning. SpringerLink. 

https://link.springer.com/chapter/10.1007/978-3-030-98989-7_2 

Salazar-Briones, C., Ruiz-Gibert, J. M., Lomelí-Banda, M. A., & Mungaray-

Moctezuma, A. (2020). An Integrated Urban Flood Vulnerability Index for 

Sustainable Planning in Arid Zones of Developing Countries. In Water (Vol. 12, 

Issue 2, p. 608). MDPI AG. https://doi.org/10.3390/w12020608 

Santos, R., Santos, P., Sharan, P., & Rodriguez, C. (2021). Digital 

Agglomeration in the Improvement of the Human Development Index in Peru. In 

2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC). IEEE. 

https://doi.org/10.1109/r10-htc53172.2021.9641710 

Shabani, E. (2023). Site response and liquefaction hazard analysis in 

Ramsar city, North of Iran. Copernicus GmbH. https://doi.org/10.5194/egusphere-

egu23-4084 

Shafapourtehrany, M., Yariyan, P., Özener, H., Pradhan, B., & Shabani, F. 

(2022). Evaluating the application of K-mean clustering in Earthquake vulnerability 

mapping of Istanbul, Turkey. In International Journal of Disaster Risk Reduction 

(Vol. 79, p. 103154). Elsevier BV. https://doi.org/10.1016/j.ijdrr.2022.103154 

Shao, J., Wang, X., Liang, C., & Holguín-Veras, J. (2019). Research 

progress on deprivation costs in humanitarian logistics. International Journal of 

Disaster Risk Reduction, 101343. doi:10.1016/j.ijdrr.2019.101343 

https://doi.org/10.1134/s107570071602012x
https://doi.org/10.1080/24749508.2019.1700670
https://link.springer.com/chapter/10.1007/978-3-030-98989-7_2
https://doi.org/10.3390/w12020608
https://doi.org/10.1109/r10-htc53172.2021.9641710
https://doi.org/10.5194/egusphere-egu23-4084
https://doi.org/10.5194/egusphere-egu23-4084
https://doi.org/10.1016/j.ijdrr.2022.103154


86 

 

Shao, J., Wang, X., Liang, C., & Holguín-Veras, J. (2020). Research 

progress on deprivation costs in humanitarian logistics. International Journal of 

Disaster Risk Reduction, 42, 101343. https://doi.org/10.1016/j.ijdrr.2019.101343 

Shrivastava, P. (2003). Principles of Emergency Planning and Management. 

Risk Management, 5(2), 67–67. https://doi.org/10.1057/palgrave.rm.8240152 

Szczyrba, L., Zhang, Y., Pamukcu, D., Eroglu, D. I., & Weiss, R. (2021). 

Quantifying the role of vulnerability in hurricane damage via a Machine Learning 

case study. Natural Hazards Review, 22(3), 04021028. 

Tasnuva, A., Hossain, Md. R., Salam, R., Islam, A. R. Md. T., Patwary, M. 

M., & Ibrahim, S. M. (2020). Employing social vulnerability index to assess 

household social vulnerability of natural hazards: an evidence from southwest 

coastal Bangladesh. In Environment, Development and Sustainability (Vol. 23, 

Issue 7, pp. 10223–10245). Springer Science and Business Media LLC. 

https://doi.org/10.1007/s10668-020-01054-9 

Tatebe, J., & Mutch, C. (2015). Perspectives on education, children and 

young people in disaster risk reduction. In International Journal of Disaster Risk 

Reduction (Vol. 14, pp. 108–114). Elsevier Ltd. 

https://doi.org/10.1016/j.ijdrr.2015.06.011 

Tomasini, R., & Wassenhove, L. V. (2009). Humanitarian Logistics. Palgrave 

Macmillan UK. https://doi.org/10.1057/9780230233485 

Twigg, J. (2004). Disaster risk reduction: Mitigation and preparedness in 

development and emergency programming. Humanitarian Practice Network, 

Overseas Development Institute. 

Ullah, I., Saleem, F., Iyakaremye, V., Yin, J., Ma, X., Syed, S., Hina, S., 

Asfaw, T. G., & Omer, A. (2022). Projected Changes in Socioeconomic Exposure 

to Heatwaves in South Asia Under Changing Climate. In Earth's Future (Vol. 10, 

Issue 2). American Geophysical Union (AGU). 

https://doi.org/10.1029/2021ef002240 

UNDRR, 2020. Global Assessment Report on Disaster Risk Reduction. 

United Nations Office for Disaster Risk Reduction. Available online: 

https://gar.unisdr.org/2021. 

https://doi.org/10.1007/s10668-020-01054-9
https://doi.org/10.1057/9780230233485
https://doi.org/10.1029/2021ef002240
https://gar.unisdr.org/2021


87 

 

United Nations Office for Disaster Risk Reduction (2015). The Sendai 

Framework for Disaster Risk Reduction, United Nation, New York, NY. 

Van Wassenhove, L. N. (2006). Humanitarian aid logistics: supply chain 

management in high gear. Journal of the Operational Research Society, 57(5), 

475–489. https://doi.org/10.1057/palgrave.jors.2602125 

Venkatesh, B., & Anuradha, J. (2019). A Review of Feature Selection and Its 

Methods. In Cybernetics and Information Technologies (Vol. 19, Issue 1, pp. 3–

26). Walter de Gruyter GmbH. https://doi.org/10.2478/cait-2019-0001 

Villarroel-Lamb, D. (2020). Quantitative risk assessment of coastal erosion 

in the caribbean region. Natural Hazards Review, 21(3), 04020021. 

Wang, X., Choi, T. M., Liu, H., & Siu, K. Y. (2018). A novel hybrid ant colony 

optimization algorithm for emergency transportation problems during post-disaster 

scenarios. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(4), 

545-556. 

Waring, J., Lindvall, C., & Umeton, R. (2020). Automated Machine Learning: 

Review of the state-of-the-art and opportunities for healthcare. Artificial intelligence 

in medicine, 104, 101822. 

WFP. (2018). Forecast-based financing: A new approach to humanitarian 

action. United Nations World Food Programme. 

Wilcox, R. (2017). Introduction to Robust Estimation and Hypothesis Testing 

(4th ed.). ScienceDirect. 

https://www.sciencedirect.com/book/9780128047330/introduction-to-robust-

estimation-and-hypothesis-testing 

Wright, N., Fagan, L., Lapitan, J. M., Kayano, R., Abrahams, J., Huda, Q., & 

Murray, V. (2020). Health Emergency and Disaster Risk Management: Five Years 

into Implementation of the Sendai Framework. In International Journal of Disaster 

Risk Science (Vol. 11, Issue 2, pp. 206–217). Springer Science and Business 

Media LLC. https://doi.org/10.1007/s13753-020-00274-x 

Xin, Y., & Ren, X. (2022). Predicting depression among rural and urban 

disabled elderly in China using a random forest classifier. BMC Psychiatry, 22(1), 

1-11. 

https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.1007/s13753-020-00274-x


88 

 

Xu, X., Liang, T., Zhu, J., Zheng, D., & Sun, T. (2019). Review of classical 

dimensionality reduction and sample selection methods for large-scale data 

processing. In Neurocomputing (Vol. 328, pp. 5–15). Elsevier BV. 

https://doi.org/10.1016/j.neucom.2018.02.100 

Yang, L., & Shami, A. (2020). On hyperparameter optimization of Machine 

Learning algorithms: Theory and practice. Neurocomputing, 415, 295–316. 

https://doi.org/10.1016/j.neucom.2020.07.061 

Zhao, J., Zhang, Q., Wang, D., Wu, W., & Yuan, R. (2022). Machine 

Learning-Based Evaluation of Susceptibility to Geological Hazards in the 

Hengduan Mountains Region, China. International Journal of Disaster Risk 

Science, 13(2), 305–316. https://doi.org/10.1007/s13753-022-00401-w 

Zheng, A., & Casari, A. (2018). Feature engineering for Machine Learning: 

principles and techniques for data scientists. O'Reilly Media, Inc. 

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the 

elastic net. Journal of the Royal Statistical Society: Series B (Statistical 

Methodology), 67(2), 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x 

 

  

https://doi.org/10.1016/j.neucom.2018.02.100
https://doi.org/10.1111/j.1467-9868.2005.00503.x


89 

 

Appendix - Elsevier copyright 

 

 

Overview 

In order for Elsevier to publish and disseminate research articles, we need 
certain publishing rights from authors, which are determined by a publishing 
agreement between the author and Elsevier. 
For articles published open access, the authors license exclusive rights in their 
article to Elsevier where a CC BY-NC-ND end user license is selected, and 
license non-exclusive rights where a CC BY end user license is selected. 
For articles published under the subscription model, the authors typically 
transfer copyright to Elsevier. In some circumstances, authors may instead grant 
us (or the learned society for whom we publish) an exclusive license to publish 
and disseminate their work. 
Regardless of whether they choose to publish open access or subscription with 
Elsevier, authors have many of the same rights under our publishing agreement, 
which support their need to share, disseminate and maximize the impact of their 
research. 
For open access articles, authors will also have additional rights, depending on 
the Creative Commons end user license that they select. This Creative 
Commons license sets out the rights that readers (as well as the authors) have 
to re-use and share the article. Learn how articles can be re-used and shared 
under these licenses. 
This page aims to summarize authors’ rights when publishing with Elsevier; 
these are explained in more detail in the publishing agreement between the 
author and Elsevier. 
Irrespective of how an article is published, Elsevier is committed to protect and 
defend authors’ works and their reputation. We take allegations of infringement, 
plagiarism, ethical disputes, and fraud very seriously. 
 

Author rights 

 

 

https://beta.elsevier.com/about/policies-and-standards/open-access-licenses
https://beta.elsevier.com/about/policies-and-standards/open-access-licenses


90 

 

The below table explains the rights that authors have when they publish with 
Elsevier, for authors who choose to publish either open access or subscription. 
These apply to the corresponding author and all co-authors. 
 

Author rights in Elsevier’s proprietary 
journals 

Published 
open access 

Published 
subscription 

Retain patent and trademark rights √ √ 

Retain the rights to use their research data 
freely without any  restriction 

√ √ 

Receive proper attribution and credit for their 
published work 

√ √ 

Re-use their own material in new works without 
permission or payment (with full 
acknowledgement of the original article): 1. 
Extend an article to book length 2. Include an 
article in a subsequent compilation of their own 
work 3. Re-use portions, excerpts, and their 
own figures or tables in other works. 

√ √ 

Use and share their works for scholarly 
purposes (with full acknowledgement of the 
original article): 1. In their own classroom 
teaching. Electronic and physical distribution of 
copies is permitted 2. If an author is speaking 
at a conference, they can present the article 
and distribute copies to the attendees 3. 
Distribute the article, including by email, to their 
students and to research colleagues who they 
know for their personal use 4. Share and 
publicize the article via Share Links, which 
offers 50 days’ free access for anyone, without 
signup or registration 5. Include in a thesis or 
dissertation (provided this is not published 
commercially) 6. Share copies of their article 
privately as part of an invitation-only work 
group on commercial sites with which the 
publisher has a hosting agreement 

√ √ 

Publicly share the preprint on any website or 
repository at any time. 

√ √ 

Publicly share the accepted manuscript on 
non-commercial sites 

√ 

√ using a CC BY-
NC-ND license and 
usually only after 
an embargo period 
(see 
Sharing Policy 
for more 
information) 

Publicly share the  final published article 

√  in line with 
the author’s 
choice of end 
user license 

× 

Retain copyright √ × 

 

 

https://beta.elsevier.com/about/policies-and-standards/sharing


91 

 

Institution rights 

 

Regardless of how the author chooses to publish with Elsevier, their institution 
has the right to use articles for classroom teaching and internal training. Articles 
can be used for these purposes throughout the author’s institution, not just by the 
author: 
 

Institution rights in Elsevier’s proprietary journals 
  
(providing full acknowledgement of the original article is given) 

All 
articles 

Copies can be distributed electronically as well as in physical form for 
classroom teaching and internal training purposes 

√ 

Material can be included in coursework and courseware programs for use 
within the institution (but not in Massive Open Online Courses) 

√ 

Articles can be included in applications for grant funding √ 

Theses and dissertations which contain embedded final published 
articles as part of the formal submission can be posted publicly by the 
awarding institution with DOI links back to the formal publication on 
ScienceDirect 

√ 

 

Government rights 

 

For US government employees, works created within the scope of their 
employment are considered to be public domain and Elsevier's publishing 
agreements do not require a transfer or license of rights for such works. 
In the UK and certain commonwealth countries, a work created by a government 
employee is copyrightable, but the government may own the copyright (Crown 
copyright). Please find information about UK government employees publishing 
open access. 
 

Find out more 

 

• Download a sample publishing agreement for articles financed by journal 
subscriptions in English(opens in new tab/window) and French(opens in new 
tab/window) 

• Download a sample publishing agreement for articles published open access 
with a commercial user license(opens in new tab/window) (CC BY) and a non-
commercial user license(opens in new tab/window). (CC BY-NC-ND) 

• For authors who wish to self-archive see our sharing guidelines 

• See our author pages for further details about how to promote your article 

• See our hosting page for additional information on hosting research published 
by Elsevier 

• For use of Elsevier material not defined here please see our permissions 
page or visit the Permissions Support Center(opens in new tab/window) 

• If an author has become aware of a possible plagiarism, fraud or infringement 
we recommend contacting their Elsevier publishing contact who can then 
liaise with our in-house legal department 

https://beta.elsevier.com/open-access/agreements/uk-national-archives
https://beta.elsevier.com/open-access/agreements/uk-national-archives
https://assets.ctfassets.net/o78em1y1w4i4/2d8geUX67PmWYQWY0wKCt3/d0d93c10e77d066e271fd8bb241bd457/JPA_updated_March_2022.pdf
https://assets.ctfassets.net/o78em1y1w4i4/2JPQM2H75ivItlVgj3IaSe/cc2e9226ae5d7c0e78de5fa67e9e87f5/Sample-P-copyright-French-2.pdf
https://assets.ctfassets.net/o78em1y1w4i4/2JPQM2H75ivItlVgj3IaSe/cc2e9226ae5d7c0e78de5fa67e9e87f5/Sample-P-copyright-French-2.pdf
https://assets.ctfassets.net/o78em1y1w4i4/2TLaj37KLvWDAvoTbN43QD/0f045d715ec8bfc31564d63996bcf797/CC-BY-JPLA_updated_March-2022.pdf
https://assets.ctfassets.net/o78em1y1w4i4/7rk2Qmdb5cPA9OUmDrjhR8/75879adc332c38cb5d842c45fe45ef38/CC-BY-NC-ND-JPLA_updated_March-2022.pdf
https://assets.ctfassets.net/o78em1y1w4i4/7rk2Qmdb5cPA9OUmDrjhR8/75879adc332c38cb5d842c45fe45ef38/CC-BY-NC-ND-JPLA_updated_March-2022.pdf
https://beta.elsevier.com/about/policies-and-standards/sharing
https://beta.elsevier.com/researcher/author/submit-your-paper/sharing-and-promoting-your-article
https://beta.elsevier.com/about/policies-and-standards/hosting
https://beta.elsevier.com/about/policies-and-standards/copyright/permissions
https://beta.elsevier.com/about/policies-and-standards/copyright/permissions
https://service.elsevier.com/app/contact/supporthub/permissions-helpdesk


92 

 

• If you are publishing in a society or third party owned journal, they may have 
different publishing agreements. Please see the journal's Guide for Authors 
for journal specific copyright information 


